Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1419260, 2024.
Article in English | MEDLINE | ID: mdl-38863545

ABSTRACT

Garlic cultivars are predominantly characterized by their sterility and reliance on asexual reproduction, which have traditionally prevented the use of hybrid breeding for cultivar improvement in garlic. Our investigation has revealed a notable exception in the garlic line G398, which demonstrates the ability to produce fertile pollen. Notably, at the seventh stage of anther development, callose degradation in the sterile line G390 was impeded, while G398 exhibited normal callose degradation. Transcriptome profiling revealed an enhanced expression of the callose-degrading gene, AsaNRF1, in the mature flower buds of the fertile line G398 compared to the sterile line G390. An insertion in the promoter of AsaNRF1 in G390 was identified, which led to its reduced expression at the tetrad stage and consequently delayed callose degradation, potentially resulting in the male sterility of G390. A discriminatory marker was developed to distinguish between fertile G398 and sterile G390, facilitating the assessment of male fertility in garlic germplasm resources. This study introduces a practical approach to harnessing garlic hybridization, which can further facilitate the breeding of new cultivars and the creation of novel male-fertile garlic germplasm using modern molecular biology methods.

2.
Plants (Basel) ; 12(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37631139

ABSTRACT

Cucumber (Cucumis sativus L.) is an important horticultural crop worldwide. Sodium (Na+) and chloride (Cl-) in the surface soil are the major limiting factors in coastal areas of Shandong Province in China. Therefore, to understand the mechanism used by cucumber to adapt to sodium chloride (NaCl), we analyzed the phenotypic and physiological indicators of eighteen cucumber germplasms after three days under 100 and 150 mM NaCl treatment. A cluster analysis revealed that eighteen germplasms could be divided into five groups based on their physiological indicators. The first three groups consisted of seven salt-tolerant and medium salt-tolerant germplasms, including HLT1128h, Zhenni, and MC2065. The two remaining groups consisted of five medium salt-sensitive germplasms, including DM26h and M1-2-h-10, and six salt-sensitive germplasms including M1XT and 228. A principal component analysis revealed that the trend of comprehensive scores was consistent with the segmental cluster analysis and survival rates of cucumber seedlings. Overall, the phenotype, comprehensive survival rate, cluster analysis, and principal component analysis revealed that the salt-tolerant and salt-sensitive germplasms were Zhenni, F11-15, MC2065, M1XT, M1-2-h-10, and DM26h. The results of this study will provide references to identify or screen salt-tolerant cucumber germplasms and lay a foundation for breeding salt-tolerant cucumber varieties.

3.
Environ Sci Pollut Res Int ; 24(24): 19807-19815, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28685339

ABSTRACT

Gasification has gained advantage as an effective way to dispose domestic solid waste in mountainous rural of China. However, its toxic emissions such as PCDD/Fs and heavy metals, as well as their potential environmental risks, were not well studied in engineering application. In this study, an updraft fixed bed gasifier was investigated by field sampling analysis. Results showed that low toxic emissions (dust, SO2, NOx, HCl, CO, H2S, NH3, PCDD/Fs and heavy metals) in the flue gas were achieved when the rural solid waste was used as feedstock. The mass distribution of heavy metals showed that 94.00% of Pb, 80.45% of Cu, 78.00% of Cd, 77.31% of Cr, and 76.25% of As were remained in residual, whereas 86.58% of Hg was found in flue gas. The content of PCDD/Fs in the flue gas was 0.103 ngI-TEQ·Nm-3, and the total emission factor of PCDD/Fs from the gasifier was 50.04 µgI-TEQ·t-waste-1, among which only 0.04 µgI-TEQ·t-waste-1 was found in the flue gas. The total output of PCDD/Fs was1.89 times as high as input, indicting the updraft fixed bed gasifier increased emission of PCDD/Fs during the treatment domestic solid waste. In addition, the distribution characteristics of PCDD/Fs congeners reflected that PCDD/Fs was mainly generated in the gasification process rather than the stage of flue gas cleaning, suggesting the importance to effectively control the generation of PCDD/Fs within the gasifier chamber in order to obtain a low PCDD/Fs emission level.


Subject(s)
Air Pollutants/analysis , Metals, Heavy/analysis , Solid Waste/analysis , China , Refuse Disposal
4.
Plant Cell Rep ; 36(6): 901-909, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28265748

ABSTRACT

KEY MESSAGE: Different mitotype-specific markers were developed to distinguish different cytoplasms in Brassica napus L. Mitotype-specific markers have been developed to distinguish different mitotypes in plant. And use of molecular markers to identify different mitotypes in Brassica napus would enhance breeding efficiency. Here, we comparatively analyzed six sequenced mitochondrial genomes in Brassica napus and identified collinear block sequences and mitotype-specific sequences (MSSs) of these mitochondrial genomes. The collinear block sequences between mitochondrial genomes of nap, cam, and pol cytoplasmic male sterility (CMS) lines were higher than those of other lines. After comparative analysis of the six sequenced mitochondrial genomes (cam, nap, ole, pol CMS, ogu CMS, and hau CMS), 90 MSSs with sizes ranging from 101 to 9981 bp and a total length of 103,756 bp (accounting for 6.77% of the mitochondrial genome sequences) were identified. Additionally, 12 mitotype-specific markers were developed based on the mitochondrial genome-specific sequences in order to distinguish among these different mitotypes. Cytoplasms of 570 different inbred lines collected across scientific research institutes in China were identified using the MSS markers developed in our study. In addition to confirming the accuracy of the cytoplasmic identification, we also identified mitotypes that have not been reported in Brassica napus. Our study may provide guidance for the classification of different mitotypes in B. napus breeding.


Subject(s)
Brassica napus/metabolism , Cytoplasm/metabolism , Brassica napus/physiology , Breeding , Cytoplasm/physiology , Genome, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Plant Mol Biol ; 93(6): 579-592, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28108964

ABSTRACT

We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.


Subject(s)
Brassica napus/genetics , Brassica napus/metabolism , Chlorophyll/metabolism , Heme Oxygenase-1/metabolism , Plant Proteins/metabolism , Brassica napus/growth & development , Chlorophyll/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Heme Oxygenase-1/genetics , Mutation , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , RNA, Long Noncoding , Seedlings/genetics , Seedlings/metabolism
7.
BMC Genomics ; 15: 258, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24707970

ABSTRACT

BACKGROUND: The Polima (pol) system of cytoplasmic male sterility (CMS) and its fertility restoration gene Rfp have been used in hybrid breeding in Brassica napus, which has greatly improved the yield of rapeseed. However, the mechanism of the male sterility transition in pol CMS remains to be determined. RESULTS: To investigate the transcriptome during the male sterility transition in pol CMS, a near-isogenic line (NIL) of pol CMS was constructed. The phenotypic features and sterility stage were confirmed by anatomical analysis. Subsequently, we compared the genomic expression profiles of fertile and sterile young flower buds by RNA-Seq. A total of 105,481,136 sequences were successfully obtained. These reads were assembled into 112,770 unigenes, which composed the transcriptome of the bud. Among these unigenes, 72,408 (64.21%) were annotated using public protein databases and classified into functional clusters. In addition, we investigated the changes in expression of the fertile and sterile buds; the RNA-seq data showed 1,148 unigenes had significantly different expression and they were mainly distributed in metabolic and protein synthesis pathways. Additionally, some unigenes controlling anther development were dramatically down-regulated in sterile buds. CONCLUSIONS: These results suggested that an energy deficiency caused by orf224/atp6 may inhibit a series of genes that regulate pollen development through nuclear-mitochondrial interaction. This results in the sterility of pol CMS by leading to the failure of sporogenous cell differentiation. This study may provide assistance for detailed molecular analysis and a better understanding of pol CMS in B. napus.


Subject(s)
Brassica napus/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Reproduction/genetics , Transcriptome , Computational Biology , High-Throughput Nucleotide Sequencing , Models, Biological , Phenotype , Pollen/genetics , Reproducibility of Results
8.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 6): o1550, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21754909

ABSTRACT

In the title compound, C(24)H(15)NO(3), the fused naphthaquin-one-pyrrole unit is approximately planar, the naphthaquinone ring system making a dihedral angle of 2.91 (10)° with the pyrrole ring. The plane of the pyrrole ring makes a dihedral angle 61.64 (14)° with that of the benzene ring of the benzoyl-methyl-ene group. The crystal structure is stablized by intra-molecular C-H⋯O inter-actions.

SELECTION OF CITATIONS
SEARCH DETAIL
...