Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731961

ABSTRACT

Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.


Subject(s)
Glucose , Heat-Shock Response , Pectinidae , Phylogeny , Animals , Pectinidae/metabolism , Pectinidae/genetics , Glucose/metabolism , Heat-Shock Response/physiology , Anaerobiosis , Succinic Acid/metabolism , Metabolic Networks and Pathways , Aspartate Aminotransferases/metabolism , Aspartate Aminotransferases/genetics
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732036

ABSTRACT

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Subject(s)
Bivalvia , Pectinidae , Receptors, Somatostatin , Animals , Pectinidae/genetics , Pectinidae/growth & development , Pectinidae/metabolism , Bivalvia/genetics , Bivalvia/growth & development , Bivalvia/metabolism , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Phylogeny , RNA Interference , Gene Expression Regulation, Developmental
3.
Genes (Basel) ; 15(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38540424

ABSTRACT

Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.


Subject(s)
Bivalvia , Chlorella , Animals , Fatty Acid Desaturases/genetics , Fatty Acids, Unsaturated/genetics , Fatty Acids, Unsaturated/metabolism , Chlorella/metabolism , Bivalvia/genetics , Bivalvia/metabolism , Fatty Acids/metabolism
4.
Evol Appl ; 17(2): e13657, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38357357

ABSTRACT

The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.

5.
Biology (Basel) ; 12(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37626944

ABSTRACT

Mollusca represents one of the ancient bilaterian groups with high morphological diversity, while the formation mechanisms of the precursors of all germ cells, primordial germ cells (PGCs), have not yet been clarified in mollusks. PRDI-BF1 and RIZ homology domain-containing proteins (PRDMs) are a group of transcriptional repressors, and PRDM1 (also known as BLIMP1) and PRDM14 have been reported to be essential for the formation of PGCs. In the present study, we performed a genome-wide retrieval in Mulinia lateralis and identified 11 putative PRDMs, all of which possessed an N-terminal PR domain. Expressional profiles revealed that all these prdm genes showed specifically high expression levels in the given stages, implying that all PRDMs played important roles during early development stages. Specifically, Ml-prdm1 was highly expressed at the gastrula stage, the key period when PGCs arise, and was specifically localized in the cytoplasm of two or three cells of blastula, gastrula, or trochophore larvae, matching the typical characteristics of PGCs. These results suggested that Ml-prdm1-positive cells may be PGCs and that Ml-prdm1 could be a candidate marker for tracing the formation of PGCs in M. lateralis. In addition, the expression profiles of Ml-prdm14 hinted that it may not be associated with PGCs of M. lateralis. The present study provides insights into the evolution of the PRDM family in mollusks and offers a better understanding of the formation of PGCs in mollusks.

6.
Biol Sex Differ ; 13(1): 69, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36461090

ABSTRACT

BACKGROUND: Gonadal development is driven by a complex genetic cascade in vertebrates. However, related information remains limited in molluscs owing to the long generation time and the difficulty in maintaining whole life cycle in the lab. The dwarf surfclam Mulinia lateralis is considered an ideal bivalve model due to the short generation time and ease to breed in the lab. RESULTS: To gain a comprehensive understanding of gonadal development in M. lateralis, we conducted a combined morphological and molecular analysis on the gonads of 30 to 60 dpf. Morphological analysis showed that gonad formation and sex differentiation occur at 35 and 40-45 dpf, respectively; then the gonads go through gametogenic cycle. Gene co-expression network analysis on 40 transcriptomes of 35-60 dpf gonads identifies seven gonadal development-related modules, including two gonad-forming modules (M6, M7), three sex-specific modules (M14, M12, M11), and two sexually shared modules (M15, M13). The modules participate in different biological processes, such as cell communication, glycan biosynthesis, cell cycle, and ribosome biogenesis. Several hub transcription factors including SOX2, FOXZ, HSFY, FOXL2 and HES1 are identified. The expression of top hub genes from sex-specific modules suggests molecular sex differentiation (35 dpf) occurs earlier than morphological sex differentiation (40-45 dpf). CONCLUSION: This study provides a deep insight into the molecular basis of gonad formation, sex differentiation and gametogenesis in M. lateralis, which will contribute to a comprehensive understanding of the reproductive regulation network in molluscs.


Subject(s)
Bivalvia , Gene Regulatory Networks , Female , Male , Animals , Gene Expression Profiling , Gonads , Transcriptome
7.
Antioxidants (Basel) ; 11(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35739981

ABSTRACT

Temperature is an important factor affecting the growth, development and survival of marine organisms. A short episode of high temperature has been proven to be a severe threat to sustainable shellfish culture. Zhikong scallop (Chlamys farreri), a shellfish with broad economic and biological value in North China, has frequently experienced heat stress in summer in recent years. To understand the effects of heat stress on shellfish, the metabolism of C. farreri was analyzed after exposure to 27 °C for either 6 h or 30 d. After 6 h of heat stress exposure, a total of 326 and 264 significantly different metabolites (SDMs) were identified in gill and mantle tissues, respectively. After 30 d of heat stress exposure, a total of 381 and 341 SDMs were found in the gill and mantle tissues, respectively. These SDMs were mainly related to the metabolism of amino acids, carbohydrates, lipids and nucleotides. A decline in pyruvic acid, and an increase in citric acid and fumaric acid in the gills and mantle of C. farreri indicated an alteration in energy metabolism, which may be attributed to increased ATP production in order to overcome the heat stress. Among the SDMs, 33 metabolites, including pyruvic acid, glycine and citric acid, were selected as potential biomarkers for heat stress response in C. farreri. In addition, a decline in glutamine and ß-Alanine levels indicated oxidative stress in C. farreri exposed to heat, as well as an increase in the total antioxidant capacity (T-AOC). Our findings suggested C. farreri have the potential to adapt to heat stress by regulating energy metabolism and antioxidant capacity.

8.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681735

ABSTRACT

Transient receptor potential (TRP) channel plays a significant role in mediating various sensory physiological functions. It is widely present in the vertebrate and invertebrate genomes and can be activated by multiple compounds, messenger molecules, temperature, and mechanical stimulation. Mollusks are the second largest phylum of the animal kingdom and are sensitive to environmental factors. However, the molecular underpinnings through which mollusks sense and respond to environmental stimulus are unknown. In this study, we systematically identified and characterized 17 TRP channels (C.FA TRPs, seven subfamilies) in the genome of the Zhikong scallop (Chlamys farreri). All C.FA TRPs had six transmembrane structures (TM1-TM6). The sequences and structural features of C.FA TRPs are highly conserved with TRP channels of other species. Spatiotemporal expression profiling suggested that some C.FA TRPs participated in the early embryonic development of scallops and the sensory process of adult tissues. Notably, the expression of C.FA TRPM3 continuously increased during developmental stages and was highest among all C.FA TRPs. C.FA TRPC-α was specifically expressed in eyes, which may be involved in light transmission of scallop eyes. Under high temperature stress, C.FA TRPA1 and C.FA TRPA1-homolog upregulated significantly, which indicated that the TRPA subfamily is the thermoTRPs channel of scallops. Our results provided the first systematic study of TRP channels in scallops, and the findings will provide a valuable resource for a better understanding of TRP evolution and function in mollusks.


Subject(s)
Pectinidae/metabolism , Transient Receptor Potential Channels/metabolism , Amino Acid Sequence , Animals , Embryonic Development , Gills/metabolism , Hemolymph/metabolism , Humans , Pectinidae/genetics , Pectinidae/growth & development , Phylogeny , Protein Domains/genetics , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Alignment , Stress, Physiological , Temperature , Transient Receptor Potential Channels/classification , Transient Receptor Potential Channels/genetics , Up-Regulation
9.
Genes (Basel) ; 12(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34680986

ABSTRACT

Heat shock proteins 90 (HSP90s) are a class of ubiquitous, highly conserved, and multi-functional molecular chaperones present in all living organisms. They assist protein folding processes to form functional proteins. In the present study, three HSP90 genes, CfHSP90, CfGRP94 and CfTRAP1, were successfully identified in the genome of Chlamys farreri. The length of CfHSP90, CfGRP94 and CfTRAP1 were 7211 bp, 26,457 bp, and 28,699 bp, each containing an open reading frame (ORF) of 2181 bp, 2397 bp, and 2181 bp, and encoding proteins of 726, 798, and 726 amino acids, respectively. A transcriptomic database demonstrated that CfHSP90 and CfGRP94 were the primary functional executors with high expression during larval development and in adult tissues, while CfTRAP1 expression was low. Furthermore, all of the three CfHSP90s showed higher expression in gonads and ganglia as compared with other tissues, which indicated their probable involvement in gametogenesis and nerve signal transmission in C. farreri. In addition, under heat stress, the expressions of CfHSP90 and CfGRP94 were significantly up-regulated in the mantle, gill, and blood, but not in the heart. Nevertheless, the expression of CfTRAP1 did not change significantly in the four tested tissues. Taken together, in coping with heat stress, CfHSP90 and CfGRP94 could help correct protein folding or salvage damaged proteins for cell homeostasis in C. farreri. Collectively, a comprehensive analysis of CfHSP90s in C. farreri was conducted. The study indicates the functional diversity of CfHSP90s in growth, development, and environmental response, and our findings may have implications for the subsequent in-depth exploration of HSP90s in invertebrates.


Subject(s)
Fishes/genetics , HSP90 Heat-Shock Proteins/genetics , Heat-Shock Response , Membrane Glycoproteins/genetics , Animals , Homeostasis
10.
Aquat Toxicol ; 240: 105963, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34547702

ABSTRACT

Ocean acidification (OA), which refers to a gradual decrease in seawater pH due to the absorption of atmospheric carbon dioxide, profoundly affects the growth, development and survival of bivalves. Relatively limited studies have assessed the resilience of bivalve to OA. In the present study, Patinopecten yessoensis, an economically and ecologically significant species, were exposed to low pH (pH = 7.5) for 4 weeks. Forty-seven scallops that died in the first week were considered pH-sensitive population, and 20 that were alive at the end of the experiment were considered pH-tolerant population. A genome-wide association study was conducted to identify the genomic loci associated the resilience of P. yessoensis to OA. Twenty-one single nucleotide polymorphisms were significantly associated with resilience, which were distributed in 11 linkage groups. Within the linkage disequilibrium block region (± 300 kb) surrounding the 21 SNPs, 193 candidate genes were successfully identified. Particularly, five associated SNPs were directly located on five genes, including SP24, CFDH, 5HTR3, HSDL1 and ZFP346. The GO enrichment and KEGG pathway analyses showed that the molecular response of P. yessoensis to OA mainly involved neural signal transmission, energy metabolism and redox reaction. Candidate genes were expressed during larval development and in adult tissues. Furthermore, the expression of 30 candidate genes changed significantly under low pH stress in the mantle. Our results reveal certain SNPs and candidate genes that could elucidate the different responses of P. yessoensis to OA. The genetic variations indicated molecular resilience in P. yessoensis populations, which may enable adaptation to future acidification stress.


Subject(s)
Pectinidae , Animals , Genome-Wide Association Study , Hydrogen-Ion Concentration , Oceans and Seas , Pectinidae/genetics , Polymorphism, Single Nucleotide , Seawater
11.
Front Physiol ; 12: 688626, 2021.
Article in English | MEDLINE | ID: mdl-34393814

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in all eukaryotic organisms, participating growth and development, as well as stress response. In the present study, three MAPK genes were successfully identified from the genome of Chlamys farreri, respectively, named CfERK1/2, CfJNK, and Cfp38, and only one copy of ERK, JNK, and p38 were detected. Domain analysis indicated that CfMAPKs possessed the typical domains, including S_TKc, Pkinase, and PKc_like domain. Phylogenetic analysis showed that three CfMAPKs of MAPK subfamilies exists in the common ancestor of vertebrates and invertebrates. All CfMAPKs specifically expressed during larval development and in adult tissues, and the expression level of CfERK1/2 and Cfp38 was apparently higher than that of CfJNK. Under heat stress, the expression of CfERK1/2 and Cfp38 were significantly downregulated and then upregulated in four tissues, while the expression of CfJNK increased in all tissues; these different expression patterns suggested a different molecular mechanism of CfMAPKs for bivalves to adapt to temperature changes. The diversity of CfMAPKs and their specific expression patterns provide valuable information for better understanding of the functions of MAPK cascades in bivalves.

12.
Aquat Toxicol ; 231: 105736, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33422860

ABSTRACT

Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.


Subject(s)
Acids/chemistry , Cholinesterases/genetics , Gene Expression Regulation, Enzymologic , Oceans and Seas , Pectinidae/enzymology , Pectinidae/genetics , Amino Acid Sequence , Animals , Cholinesterases/chemistry , Cholinesterases/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Genome , Phylogeny , Protein Domains
13.
J Hum Hypertens ; 35(1): 65-73, 2021 01.
Article in English | MEDLINE | ID: mdl-32066825

ABSTRACT

Hypertensive disorders of pregnancy (HDP) comprise a group of hypertension-related diseases and represent the most common medical disorders in pregnancy. The aim of this study was to investigate the risks of adverse pregnancy outcomes in patients with different types of HDP, including gestational hypertension, chronic hypertension, preeclampsia (PE, early or late onset), PE superimposed on chronic hypertension (superimposed PE), eclampsia, and HELLP syndrome. Data from a multicenter retrospective patient cohort in China were analyzed. Seventeen adverse maternal or perinatal outcomes were evaluated. Logistic regression was used to estimate the risk of adverse outcomes for each HDP subgroups, using the gestational hypertension group as the reference. The final analysis included 2368 patients with HDP. Of these, 39.9% of patients reported at least one adverse pregnancy outcome. Patients with early onset PE had the highest risk for having both adverse maternal and perinatal outcomes (OR = 7.28, 95% CI: 2.68, 19.79). The risk of perinatal death significantly increased in HELLP syndrome, superimposed PE, and early onset PE, (OR = 13.81, 6.32, and 4.84, respectively, p < 0.05) groups. This study highlights that among patients with HDP, those with early onset PE had the highest risk for having both adverse maternal and perinatal outcomes, and patients with HELLP syndrome had the highest risk for perinatal death.


Subject(s)
Hypertension, Pregnancy-Induced , Pre-Eclampsia , Cohort Studies , Female , Humans , Hypertension, Pregnancy-Induced/epidemiology , Pre-Eclampsia/diagnosis , Pre-Eclampsia/epidemiology , Pregnancy , Pregnancy Outcome/epidemiology , Retrospective Studies
14.
Aquat Toxicol ; 222: 105452, 2020 May.
Article in English | MEDLINE | ID: mdl-32092594

ABSTRACT

Arginine kinase (AK), an important member of the phosphokinase family, is involved in temporal and spatial adenosine triphosphate (ATP) buffering systems. AK plays an important role in physiological function and metabolic regulations, in particular tissues with high and fluctuating energy demands. In present study, four AK genes were firstly identified from Yesso scallop (Patinopecten yessoensis) genome, respectively named PyAK1-4. PyAKs have highly conserved structures with a six-exon/five-exon structure, except for PyAK3. PyAK3 contains an unusual two-domain structure and a "bridge intron" between the two domains, which may originate from gene duplication and subsequent fusion. Phylogenetic analysis showed that all PyAKs belonged to an AK supercluster together with other AK proteins from Mollusca, Platyhelminthes, Arthropoda, and Nematode. A transcriptome database demonstrated that PyAK3 and PyAK4 were the main functional executors with high expression level during larval development and in adult tissues, while PyAK1 and PyAK2 were expressed at a low level. Furthermore, both PyAK2 and PyAK3 showed notably high expression in the male gonad, and PyAK4 was broadly expressed in almost all tissues with the highest level in striated muscle, indicating a tissue-specific expression pattern of PyAKs. In addition, quantitative real-time PCR results demonstrated that the expression of PyAK2, PyAK3 and PyAK4 were significantly upregulated in response to pH stress, especially in an extremely acidifying condition (pH 6.5), revealing the possible involvement of PyAKs in energetic homeostasis during environmental changes. Collectively, a comprehensive analysis of PyAKs was conducted in P. yessoensis. The diversity of PyAKs and their specific expression patterns promote a better understanding of energy metabolism in the growth, development and environmental response of P. yessoensis.


Subject(s)
Arginine Kinase/metabolism , Pectinidae/enzymology , Stress, Physiological/drug effects , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Acclimatization/drug effects , Acclimatization/genetics , Animals , Arginine Kinase/chemistry , Arginine Kinase/genetics , Databases, Genetic , Energy Metabolism/drug effects , Energy Metabolism/genetics , Genome , Hydrogen-Ion Concentration , Pectinidae/genetics , Phylogeny , Protein Structure, Secondary , Real-Time Polymerase Chain Reaction , Seawater/chemistry , Sequence Alignment , Stress, Physiological/genetics
15.
Fish Shellfish Immunol ; 98: 488-498, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31978530

ABSTRACT

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), are crucial sensors with a conserved structure in cytoplasm, inducing the production of cytokines, chemokines and host restriction factors which mediate a variety of intracellular activities to interfere with distinct PAMPs (pathogen-associated molecular patterns) for eliminating pathogens in innate immune system. Although RLR genes have been investigated in most vertebrates and some invertebrates, the systematic identification and characterization of RLR genes have not been reported in scallops. In this study, four RLR genes (PY-10413.4, PY-10413.5, PY-443.7 and PY-443.8, designated PyRLRs) were identified in Yesso scallop (Patinopecten yessoensis) through whole-genome scanning through in silico analysis, including two pairs of tandem duplicate genes located on the same scaffold (PY-10413.4 and PY-10413.5, PY-443.7 and PY-443.8, respectively). Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyRLRs were determined in all developmental stages, in healthy adult tissues, and in mantles that simulated ocean acidification (OA) exposure (pH = 6.5 and 7.5) at different time points (3, 6, 12 and 24 h). Spatiotemporal expression patterns suggested the functional roles of PyRLRs in all stages of development and growth of the scallop. Regulation expressions revealed PY-10413.4 and PY-10413.5 with one or two CARD(s) (caspase activation and recruitment domain) were up-regulated expressed at most time points, whereas PY-443.8 and PY-10413.4 without CARD were significantly down-regulated at each time points, suggesting functional differentiations in the two pairs of PyRLRs based on the structural differences in response to OA. Collectively, this study demonstrated gene duplication of RLR family genes and provide primary analysis for versatile roles in the response of the bivalve innate immune system to OA challenge.


Subject(s)
Gene Expression Regulation/physiology , Genome-Wide Association Study , Oceans and Seas , Pectinidae/genetics , Pectinidae/metabolism , Seawater/chemistry , Animals , Hydrogen-Ion Concentration , Phylogeny , Protein Conformation
16.
Fish Shellfish Immunol ; 95: 203-212, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31610293

ABSTRACT

The complement system constitutes a highly sophisticated and powerful body defense machinery acting in the innate immunity of both vertebrates and invertebrates. As central components of the complement system, significant effects of thioester-containing protein (TEP) family members on immunity have been reported in most vertebrates and in some invertebrates, but the spatiotemporal expression and regulatory patterns of TEP family genes under environmental stress have been less widely investigated in scallops. In this study, expression profiling of TEP family members in the Yesso scallop Patinopecten yessoensis (designated PyTEPs) was performed at all developmental stages, in different healthy adult tissues, and in mantles during exposure to different levels of acidification (pH = 6.5 and 7.5) for different time points (3, 6, 12 and 24 h); this profiling was accomplished through in silico analysis of transcriptome and genome databases. Spatiotemporal expression patterns revealed that PyTEPs had specific functional differentiation in all stages of growth and development of the scallop. Expression analysis confirmed the inducible expression patterns of PyTEPs during exposure to acidification. Gene duplication and alternative splicing events simultaneously occurred in PyTEP1. Seven different cDNA variants of PyTEP1 (designated PyTEP1-A-PyTEP1-G) were identified in the scallop mantle transcriptome during acidic stress. These variants were produced by the alternative splicing of seven differentially transcribed exons (exons 18-24), which encode the highly variable central region. The responses to immune stress may have arisen through the gene duplication and alternative splicing of PyTEP1. The sequence diversity of PyTEP1 isoforms and their different expression profiles in response to ocean acidification (OA) suggested a mechanism used by scallops to differentiate and regulate PyTEP1 gene expression. Collectively, these results demonstrate the gene duplication and alternative splicing of TEP family genes and provide valuable resources for elucidating their versatile roles in bivalve innate immune responses to OA challenge.


Subject(s)
Alternative Splicing , Complement System Proteins/genetics , Pectinidae/genetics , Pectinidae/immunology , Seawater/chemistry , Acids , Animals , Gene Expression Profiling , Hydrogen-Ion Concentration , Immunity, Innate , Oceans and Seas , Phylogeny , Stress, Physiological
17.
Mar Biotechnol (NY) ; 21(6): 731-742, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31473865

ABSTRACT

To consolidate the genetic, physical, and cytogenetic maps of scallop (Patinopecten yessoensis), we constructed a molecular cytogenetic map by localizing 84 fosmid clones that contain different SNP markers from 19 linkage groups (LGs) using fluorescence in situ hybridization (FISH). Among these 84 SNP-anchored clones, 56 clones produced specific and stable signals on one pair of chromosomes. Dual-color FISH assigned 19 LGs to their corresponding chromosomes with 38 SNP-anchored clones as probes. Among these 19 LGs, 17 LGs were assigned to their corresponding one pair of chromosomes, while two clones containing SNPs from LG10 and LG19 were located on two different pairs of chromosomes separately. The orientation of 7 LGs was corrected according to the chromosome location of SNPs within the same LG. In addition, a probe panel of SNP-anchored clones was developed to identify each chromosome of P. yessoensis. The molecular cytogenetic map will facilitate molecular breeding in scallop and enable comparative studies on chromosome evolution of bivalve mollusk.


Subject(s)
Chromosome Mapping , Pectinidae/genetics , Animals , Chromosomes , Genetic Linkage , In Situ Hybridization, Fluorescence , Polymorphism, Single Nucleotide
18.
Pregnancy Hypertens ; 13: 260-266, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30177063

ABSTRACT

OBJECTIVES: To better understand the effects of maternal age on birth outcomes among preeclampsia (PE) patients, we examined the rates of preterm birth, low birthweight, and small for gestational age (SGA) among different age groups and explored whether maternal age was associated with those adverse outcomes. STUDY DESIGN: This is a multicenter retrospective study. Data from 1128 PE patients, including 580 with early onset PE and 548 with late onset PE, were analyzed. MAIN OUTCOME MEASURES: Maternal age was categorized into three groups: <25, 25-34, and ≥35 years. The outcome variables were preterm birth (<37 weeks; subgroups: <28 weeks, 28-33 weeks, and 34-36 weeks), low birthweight (<2500 g; subgroups: <1500 g and <1000 g), and SGA. Logistic regression was used to analyze the associations between maternal age groups and outcomes. RESULTS: In early onset PE, compared with maternal age 25-34 years, maternal age ≥35 years was associated with elevated risk for preterm delivery before 28 weeks, and maternal age <25 years was associated with elevated risk for low birthweight and SGA. When the analysis was restricted to women who underwent cesarean section, elevated risks for preterm birth and/or low birthweight were observed for women younger than 25 years in both early and late onset PE. CONCLUSIONS: Among women with PE, maternal age <25 years could add risk to preterm birth and/or low birthweight. For women with early onset PE, maternal age ≥35 years is a risk factor for preterm delivery before 28 weeks.


Subject(s)
Birth Weight , Infant, Low Birth Weight , Maternal Age , Pre-Eclampsia/epidemiology , Premature Birth/epidemiology , Adult , Blood Pressure , China/epidemiology , Female , Gestational Age , Humans , Incidence , Infant, Small for Gestational Age , Pre-Eclampsia/diagnosis , Pre-Eclampsia/physiopathology , Pregnancy , Premature Birth/diagnosis , Premature Birth/physiopathology , Retrospective Studies , Risk Assessment , Risk Factors , Young Adult
19.
J Clin Hypertens (Greenwich) ; 20(6): 1049-1057, 2018 06.
Article in English | MEDLINE | ID: mdl-29707880

ABSTRACT

Preeclampsia is a major cause of adverse maternal and perinatal outcomes, but how to identify women and fetuses at increased risk for later adverse events is a challenge. This study aimed to investigate the risk factors for adverse maternal and perinatal outcomes in women with preeclampsia. Data from 1396 women with preeclampsia were retrospectively collected and analyzed. Eighteen candidate risk factors and 12 adverse outcomes were investigated. The following factors were found to be significantly associated with at least one adverse outcome: maternal age 35 years or older, multiple birth, the usage of assisted reproductive technology, living in a rural area, history of pregnancy-induced hypertension, male fetus, multigravida, or having polycystic ovary syndrome, hemolysis, elevated liver enzymes, and low platelet count syndrome, intrahepatic cholestasis of pregnancy, cardiovascular disease, gestational diabetes mellitus, systemic lupus erythematosus, thyroid disease, or liver disease. Compared with patients without any identified risk factors, patients with preeclampsia with three or more risk factors were at increased risk for severe adverse outcomes. Those findings demonstrated that maternal risk factors could be used as indicators supplementary to clinical symptoms and laboratory test results for the risk assessment in women with preeclampsia.


Subject(s)
Maternal Death/statistics & numerical data , Perinatal Death/etiology , Pre-Eclampsia/diagnosis , Pregnancy Complications/epidemiology , Adult , China/epidemiology , Female , Humans , Infant, Newborn , Male , Maternal Age , Perinatal Care , Pregnancy , Pregnancy Complications/classification , Pregnancy Complications/etiology , Pregnancy Outcome/epidemiology , Risk Assessment , Risk Factors
20.
Fish Shellfish Immunol ; 79: 327-339, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29803664

ABSTRACT

Thioester-containing protein (TEP) family members are characterized by their unique intrachain ß-cysteinyl-γ-glutamyl thioesters, and they play important roles in innate immune responses. Although significant effects of TEP members on immunity have been reported in most vertebrates, as well as certain invertebrates, the complete TEP family has not been systematically characterized in scallops. In this study, five TEP family genes (PyC3, PyA2M, PyTEP1, PyTEP2 and PyCD109) were identified from Yesso scallop (Patinopecten yessoensis) through whole-genome scanning, including one pair of tandem duplications located on the same scaffold. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the five genes (PyTEPs). The vast distribution of PyTEPs in TEP subfamilies confirmed that the Yesso scallop contains relatively comprehensive types of TEP members in evolution. The expression profiles of PyTEPs were determined in hemocytes after bacterial infection with gram-positive (Micrococcus luteus) and gram-negative (Vibrio anguillarum) using quantitative real-time PCR (qRT-PCR). Expression analysis revealed that the PyTEP genes exhibited disparate expression patterns in response to the infection by gram bacteria. A majority of PyTEP genes were overexpressed after bacterial stimulation at most time points, especially the notable elevation displayed by duplicated genes after V. anguillarum challenge. Interestingly, at different infection times, PyTEP1 and PyTEP2 shared analogous expression patterns, as did PyC3 and PyCD109. Taken together, these results help to characterize gene duplication and the evolutionary origin of PyTEPs and supplied valuable resources for elucidating their versatile roles in bivalve innate immune responses to bacterial pathogen challenges.


Subject(s)
Gene Expression Regulation/immunology , Immunity, Innate/genetics , Pectinidae/genetics , Pectinidae/immunology , Amino Acid Sequence , Animals , Gene Expression Profiling , Micrococcus luteus/physiology , Multigene Family/genetics , Multigene Family/immunology , Phylogeny , Sequence Alignment , Vibrio/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...