Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nano Lett ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920089

ABSTRACT

Two-dimensional (2D) lead halide perovskites are excellent candidates for X-ray detection due to their high resistivity, high ion migration barrier, and large X-ray absorption coefficients. However, the high toxicity and long interlamellar distance of the 2D perovskites limit their wide application in high sensitivity X-ray detection. Herein, we demonstrate stable and toxicity-reduced 2D perovskite single crystals (SCs) realized by interlamellar-spacing engineering via a distortion self-balancing strategy. The engineered low-toxicity 2D SC detectors achieve high stability, large mobility-lifetime product, and therefore high-performance X-ray detection. Specifically, the detectors exhibit a record high sensitivity of 13488 µC Gy1- cm-2, a low detection limit of 8.23 nGy s-1, as well as a high spatial resolution of 8.56 lp mm-1 in X-ray imaging, all of which are far better than those of the high-toxicity 2D lead-based perovskite detectors. These advances provide a new technical solution for the low-cost fabrication of low-toxicity, scalable X-ray detectors.

2.
Small ; : e2401229, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733235

ABSTRACT

The great potential of K1/2Bi1/2TiO3 (KBT) for dielectric energy storage ceramics is impeded by its low dielectric breakdown strength, thereby limiting its utilization of high polarization. This study develops a novel composition, 0.83KBT-0.095Na1/2Bi1/2ZrO3-0.075 Bi0.85Nd0.15FeO3 (KNBNTF) ceramics, demonstrating outstanding energy storage performance under high electric fields up to 425 kV cm-1: a remarkable recoverable energy density of 7.03 J cm-3, and a high efficiency of 86.0%. The analysis reveals that the superior dielectric breakdown resistance arises from effective mitigation of space charge accumulation at the interface, influenced by differential dielectric and conductance behaviors between grains and grain boundaries. Electric impedance spectra confirm the significant suppression of space charge accumulation in KNBNTF, attributable to the co-introduction of Na1/2Bi1/2ZrO3 and Bi0.85Nd0.15FeO3. Phase-field simulations reveal the emergence of a trans-granular breakdown mode in KNBNTF resulting from the mitigated interfacial polarization, impeding breakdown propagation and increasing dielectric breakdown resistance. Furthermore, KNBNTF exhibits a complex local polarization and enhances the relaxor features, facilitating high field-induced polarization and establishing favorable conditions for exceptional energy storage performance. Therefore, the proposed strategy is a promising design pathway for tailoring dielectric ceramics in energy storage applications.

3.
Small ; : e2401070, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528434

ABSTRACT

Bismuth telluride has long been recognized as the most promising near-room temperature thermoelectric material for commercial application; however, the thermoelectric performance for n-type Bi2(Te, Se)3-based alloys is far lagging behind that of its p-type counterpart. In this work, a giant hot deformation (GD) process is implemented in an optimized Bi2Te2.694Se0.3I0.006+3 wt%K2Bi8Se13 precursor and generates a unique staggered-layer structure. The staggered-layered structure, which is only observed in severely deformed crystals, exhibits a preferential scattering on heat-carrying phonons rather than charge-carrying electrons, thus resulting in an ultralow lattice thermal conductivity while retaining high-weight carrier mobility. Moreover, the staggered-layer structure is located adjacent to the van der Waals gap in Bi2(Te, Se)3 lattice and is able to strengthen the interaction between anion layers across the gap, leading to obviously improved compressive strength and Vickers hardness. Consequently, a high peak figure of merit ZT of ≈ 1.3 at 423 K, and an average ZT of ≈ 1.2 at 300-473 K can be achieved in GD sample. This study demonstrates that the GD process can successfully decouple the electrical and thermal transports with simultaneously enhanced mechanic performance.

4.
Phys Chem Chem Phys ; 26(11): 8834-8841, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38426247

ABSTRACT

With the rapid development of electronic information technology, dielectric ceramics are widely used in the field of passive devices such as multi-layer ceramic capacitors. In this paper, (Bi2/3W1/3)xTi1-xO2 (BWTOx) ceramics with superior dielectric properties have been prepared by using a traditional solid-state method. Remarkably, at a (Bi2/3W1/3)4+ doping level of 0.01, a (Bi2/3W1/3)0.01Ti0.99O2 ceramic achieved a giant dielectric permittivity of ∼1.5 × 104 and a low loss tangent of ∼0.07 at 1 kHz, as well as a good temperature independence, which could satisfy the operating temperature standards for X9R capacitors. The abnormal dielectric relaxation in the low temperature region can be explained by the interface polarization. Data based on the complex impedance spectroscopy and X-ray photoemission spectroscopy results indicate that the colossal permittivity of BWTOx ceramics is mainly ascribed to the internal barrier layer capacitance effect. The findings of this work could provide valuable insights for achieving large dielectric constants and good temperature stability simultaneously in BWTOx and other related electronic ceramic materials.

5.
Inorg Chem ; 62(49): 20364-20371, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37991326

ABSTRACT

A novel zeolite-like topology oxonitridosilicate La3.6Ba1.7Si5N10O2.1 with the space group Amm2 (no. 38) and lattice parameters a = 9.5193 (3) Å, b = 16.7011 (5) Å, c = 26.0279 (8) Å, and Z = 12 has been synthesized by a high-temperature solid-state reaction. The crystal structure of La3.6Ba1.7Si5N10O2.1 has four different kinds of tiling, and the cages in the structure are filled with La, Ba, and O atoms. The presence of a noncentrosymmetric space group further suggests its potential for nonlinear optical (NLO) applications, and La3.6Ba1.7Si5N10O2.1 demonstrated a stronger second-harmonic generation (SHG) response than that of SiO2.

6.
Chem Commun (Camb) ; 59(71): 10612-10615, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37555283

ABSTRACT

The exploration of transition metal oxynitrides has garnered significant interest due to their intriguing property diversity. Herein, we present a promising new transition metal oxynitride BaLa5V2O3N7, which features an anti-perovskite structure type. This unique structural configuration endows the material with remarkable conductivity, particularly at low temperatures, paving the way for the material to be used in a wide range of technological applications.

7.
ACS Appl Mater Interfaces ; 15(9): 11642-11651, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36847645

ABSTRACT

A series of tungsten bronze Sr2Na0.85Bi0.05Nb5-xTaxO15 (SBNN-xTa) ferroelectric ceramics were designed and synthesized by the traditional solid-phase reaction method. The B-site engineering strategy was utilized to induce structural distortion, order-disorder distribution, and polarization modulation to enhance relaxor behavior. Through investigating the impact of B-site Ta replacement on the structure, relaxor behavior, and energy storage performance, this study has shed light on the two main factors for relaxor nature: (1) with the increase of Ta substitution, the tungsten bronze crystal distortion and expansion induced the structural change from an orthorhombic Im2a phase to Bbm2 phase at room temperature; (2) the transition from ferroelectric to relaxor behavior could be attributed to the coordinate incommensurate local superstructural modulations and the generation of nanodomain structure regions. Moreover, we benefited from the effective decrease of ceramic grains and inhibition of abnormal growth. Finally, we obtained an effective energy storage density (Wrec) ∼ 1.6 J/cm3, an efficiency (η) ∼ 80%, a current density (CD) ∼ 1384.2 A/cm2, and a power density (PD) ∼ 138.4 MW/cm3.

8.
Phys Chem Chem Phys ; 25(10): 7373-7382, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36825987

ABSTRACT

Dense (Zn0.5W0.5)xTi1-xO2 (ZWTOx) ceramics were fabricated using a conventional solid state reaction method with sintering under a nitrogen atmosphere (ZWTOx-N2) and an oxygen atmosphere (ZWTOx-O2), respectively. Colossal permittivity (ε > 104) and low loss (tan δ < 0.1) were simultaneously achieved in ZWTOx-N2 ceramics, and two types of dielectric relaxation behaviors observed were interpreted to be due to interface polarization and disassociation between oxygen vacancies and trivalent titanium ions, respectively. The impedance plots suggested that the ZWTOx-N2 ceramics are electrical heterostructures composed of semiconductor and insulator grain boundaries, which proved that the CP performance of ZWTOx-N2 ceramics almost originates from the internal barrier layer capacitance (IBLC) effect. In addition, a series of anomalous dielectric behaviors such as low permittivity and low frequency dispersion were observed for ZWTOx-O2 ceramics; polarization (P)-electric field (E) hysteresis loop curves were obtained for ZWTOx-O2 ceramics, and that impedance plots have shown that the ZWTOx-O2 ceramics display higher insulation resistivity. Density functional theory (DFT) calculations illustrated that the Zn2+-W6+ ion pairs are easy to form in ZWTOx-O2 ceramics, which causes destruction of the local lattice and thus leads to abnormal dielectric behavior. This work will provide a new strategy for defect engineering in TiO2 and other CP materials.

9.
Small ; 19(19): e2207464, 2023 May.
Article in English | MEDLINE | ID: mdl-36748859

ABSTRACT

Eco-friendly transparent dielectric ceramics with superior energy storage properties are highly desirable in various transparent energy-storage electronic devices, ranging from advanced transparent pulse capacitors to electro-optical multifunctional devices. However, the collaborative improvement of energy storage properties and optical transparency in KNN-based ceramics still remains challenging. To address this issue, multiple synergistic strategies are proposed, such as refining the grain size, introducing polar nanoregions, and inducing a high-symmetry phase structure. Accordingly, outstanding energy storage density (Wtotal  ≈7.5 J cm-3 , Wrec  ≈5.3 J cm-3 ) and optical transmittance (≈76% at 1600 nm, ≈62% at 780 nm) are simultaneously realized in the 0.94(K0.5 Na0.5 )NbO3 -0.06Sr0.7 La0.2 ZrO3 ceramic, together with satisfactory charge-discharge performances (discharge energy density: ≈2.7 J cm-3 , power density: ≈243 MW cm-3 , discharge rate: ≈76 ns), surpassing previously reported KNN-based transparent ceramics. Piezoresponse force microscopy and transmission electron microscopy revealed that this excellent performance can be attributed to the nanoscale domain and submicron-scale grain size. The significant improvement in the optical transparency and energy storage properties of the materials resulted in the widening of the application prospects of the materials.

10.
Small ; 19(17): e2206439, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36703537

ABSTRACT

GeTe-based pseudo-binary (GeTe)x (AgSbTe2 )100- x (TAGS-x) is recognized as a promising p-type mid-temperature thermoelectric material with outstanding thermoelectric performance; nevertheless, its intrinsic structural transition and metastable microstructure (due to Ag/Sb/Ge localization) restrict the long-time application of TAGS-x in practical thermoelectric devices. In this work, a series of non-stoichiometric (GeTe)x (Ag1- δ Sb1+ δ Te2+ δ )100- x (x = 85∼50; δ = ≈0.20-0.23), referred to as δ-TAGS-x, with all cubic phase over the entire testing temperature range (300-773 K), is synthesized. Through optimization of crystal symmetry and microstructure, a state-of-the-art ZTmax of 1.86 at 673 K and average ZTavg of 1.43 at ≈323-773 K are realized in δ-TAGS-75 (δ = 0.21), which is the highest value among all reported cubic-phase GeTe-based thermoelectric systems so far. As compared with stoichiometric TAGS-x, the remarkable thermoelectric achieved in cubic δ-TAGS-x can be attributed to the alleviation of highly (electrical and thermal) resistive grain boundary Ag8 GeTe6 phase. Moreover, δ-TAGS-x exhibits much better mechanical properties than stoichiometric TAGS-x, together with the outstanding thermoelectric performance, leading to a robust single-leg thermoelectric module with ηmax of ≈10.2% and Pmax of ≈0.191 W. The finding in this work indicates the great application potential of non-stoichiometric δ-TAGS-x in the field of mid-temperature waste heat harvesting.

11.
ACS Appl Mater Interfaces ; 14(26): 30046-30055, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35731615

ABSTRACT

CuGaTe2 has become a widely studied mid-temperature thermoelectric material due to the advantages of large element abundance, proper band gap, and intrinsically high Seebeck coefficient. However, the intrinsically high lattice thermal conductivity and low room-temperature electrical conductivity result in a merely moderate thermoelectric performance for pristine CuGaTe2. In this work, we found that Cu deficiency can significantly reduce the activation energy Ea of Cu vacancies from ∼0.17 eV for pristine CuGaTe2 to nearly zero for Cu0.97GaTe2, thus leading to dramatic improvements in hole concentration and power factor. More remarkably, element permutations (Ag/Cu and In/Ga) at both cation sites can effectively reduce the lattice thermal conductivity at the entire testing temperatures by producing intensive atomic-scale mass and strain fluctuations. Eventually, an ultrahigh peak ZTmax value of ∼1.5 at 873 K is achieved in the composition of Cu0.72Ag0.25Ga0.6In0.4Te2, while a large average ZTavg value of ∼0.7 (323-873 K) is obtained in the Cu0.67Ag0.3Ga0.6In0.4Te2 sample, both of which are significant improvements over pristine CuGaTe2.

12.
Chem Commun (Camb) ; 58(30): 4739-4742, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35322832

ABSTRACT

Flux synthesis is an effective method to discover large crystals of new compounds. In this paper, a solid-state reaction in Li flux produced a new nitridolithosilicate La4Ba3Li3Si9N19 in the orthorhombic space group Cmcm (No. 63) with lattice parameters of a = 9.7263(1), b = 18.2746(2), c = 11.2929(1) Å, and Z = 4. The La4Ba3Li3Si9N19 exhibits a 3-D framework based on triangular clusters (3-rings) formed by vertex-sharing SiN4 tetrahedra. The rare earth Pr3+-doped La4Ba3Li3Si9N19 emits a narrow-band red emission peaking at approximately 640 nm with a full width at half-maximum of 50 nm when excited under ultraviolet light.

13.
Small ; 17(50): e2104496, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34658144

ABSTRACT

Lead telluride (PbTe) has long been regarded as an excellent thermoelectric material at intermediate temperature range (573-873 K); however, n-type PbTe's performance is always relatively inferior to its p-type counterpart mainly due to their different electronic band structures. In this work, an ultrahigh thermoelectric quality factor (µ/κL  ≈ 1.36 × 105 cm3 KJ-1 V-1 ) is reported in extra 0.3% Cu doped n-type (PbTe)0.9 (PbS)0.1 as-cast ingots. Transmission electron microscopy (TEM) characterization reveals that excess PbS exists in PbTe matrix as strained endotaxial nanoprecipitates, which affect electrical and thermal conduction discriminately: (1) coherent PbTe/PbS lattice minimizes the interface scattering of charge carriers; (2) periodic strain centers at PbTe/PbS interface exhibit intensive strain contrast, which can strongly scatter heat-carrying phonons. Electron backscattered diffraction (EBSD) characterization illustrates very large PbTe grains (≈1 mm) in these as-cast ingots, ensuring an extremely low grain boundary scattering rate thus a very high charge carrier mobility. Eventually, a remarkably high ZTmax  ≈ 1.5 at 773 K and an outstanding ZTavg  ≈ 1.0 between 323 and 773 K are simultaneously achieved in the (PbTe)0.9 (PbS)0.1  +0.3%Cu sample; these values are highly competitive with reported state-of-art n-type PbTe materials.

14.
Chem Commun (Camb) ; 57(31): 3761-3764, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33729261

ABSTRACT

The new oxonitridosilicates Ln4-xSr2+xSi5N12-xOx (Ln = La, Ce) were synthesized by high temperature solid-state reactions. The crystal structures were solved and refined from both single-crystal and powder X-ray diffraction data. These oxonitridosilicate compounds crystallize in the monoclinic space group P21/n (no. 14) and exhibit a double-layer structure made up of corner-sharing Si(O/N)4 tetrahedra. When excited with near-UV and blue light, the Pr3+ doped La2.31Sr3.69Si5N10.31O1.69 phosphor shows a narrow-band red emission peaking at 625 nm with a full width at half-maximum of 40 nm.

15.
Adv Mater ; 32(42): e2003353, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32930461

ABSTRACT

Metal-free halide perovskites, as a specific category of the perovskite family, have recently emerged as novel semiconductors for organic ferroelectrics and promise the wide chemical diversity of the ABX3 perovskite structure with mechanical flexibility, light weight, and eco-friendly processing. However, after the initial discovery 17 years ago, there has been no experimental information about their charge transport properties and only one brief mention of their optoelectronic properties. Here, growth of large single crystals of metal-free halide perovskite DABCO-NH4 Br3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium) is reported together with characterization of their instrinsic optical and electronic properties and demonstration, of metal-free halide perovskite optoelectronics. The results reveal that the crystals have an unusually large semigap of ≈16 eV and a specific band nature with the valence band maximum and the conduction band minimum mainly dominated by the halide and DABCO2+ , respectively. The unusually large semigap rationalizes extremely long lifetimes approaching the millisecond regime, leading to very high charge diffusion lengths (tens of µm). The crystals also exhibit high X-ray attenuation as well as being lightweight. All these properties translate to high-performance X-ray imaging with sensitivity up to 173 µC Gyair -1 cm-2 . This makes metal-free perovskites novel candidates for the next generation of optoelectronics.

16.
Nat Commun ; 9(1): 5302, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30546017

ABSTRACT

Single crystalline perovskites exhibit high optical absorption, long carrier lifetime, large carrier mobility, low trap-state-density and high defect tolerance. Unfortunately, all single crystalline perovskites attained so far are limited to bulk single crystals and small area wafers. As such, it is impossible to design highly demanded flexible single-crystalline electronics and wearable devices including displays, touch sensing devices, transistors, etc. Herein we report a method of induced peripheral crystallization to prepare large area flexible single-crystalline membrane (SCM) of phenylethylamine lead iodide (C6H5C2H4NH3)2PbI4 with area exceeding 2500 mm2 and thinness as little as 0.6 µm. The ultrathin flexible SCM exhibits ultralow defect density, superior uniformity and long-term stability. Using the superior ultrathin membrane, a series of flexible photosensors were designed and fabricated to exhibit very high external quantum efficiency of 26530%, responsivity of 98.17 A W-1 and detectivity as much as 1.62 × 1015 cm Hz1/2 W-1 (Jones).

17.
Chem Commun (Camb) ; 54(82): 11598-11601, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30264071

ABSTRACT

We report a novel narrow-band blue emitting phosphor Sr7.92Mg7Si9N22:0.08Eu2+. The crystal structure of Sr8Mg7Si9N22 is composed of corner-sharing and edge-sharing [SiN4] tetrahedra and distorted square-pyramid [MgN5] polyhedra. Under 350 nm excitation, Eu2+ doped Sr8Mg7Si9N22 emits narrow-band blue light with maximum intensity at 450 nm and a fwhm of 38 nm.

18.
Phys Chem Chem Phys ; 19(40): 27368-27373, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28972231

ABSTRACT

The structure, total energy and orthorhombic as well as tetragonal electronic properties of K1-xNaxNbO3 (KNN) as a function of Na concentration were studied with first principles calculations. When the Na content of KNN was gradually increased the orthogonal phase transformation occurred, which produced an enhanced piezoelectric response of the tetragonal KNN. This result proved that the high d33 originated from the phase transition. The corresponding calculations reveal that the change of Nb-O bond length is the origin of distortion of Nb-O octahedral and phase transition. In addition, the calculations observed an unusual high peak of the KNN piezoelectric parameter, which showed the same trend as the experimental results.

19.
Nanoscale ; 3(4): 1446-50, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21301708

ABSTRACT

We describe a facile approach to controllable assembly of monodisperse Fe(3)O(4) nanoparticles (NPs) on chemically reduced graphene oxide (rGO). First, reduction and functionalization of GO by polyetheylenimine (PEI) were achieved simultaneously by simply heating the PEI and GO mixture at 60 °C for 12 h. The process is environmentally friendly and convenient compared with previously reported methods. Meso-2,3-dimercaptosuccinnic acid (DMSA)-modified Fe(3)O(4) NPs were then conjugated to the PEI moiety which is located on the periphery of the GO sheets via formation of amide bonds between COOH groups of DMSA molecules bound on the surface of the Fe(3)O(4) NPs and amine groups of PEI. The magnetic GO composites were characterized by means of TEM, AFM, UV-vis, FTIR, Raman, TGA, and VSM measurements. Finally, preliminary results of using the Fe(3)O(4)-rGO composites for efficient removal of tetracycline, an antibiotic that is often found as a contaminant in the environment, are reported.


Subject(s)
Crystallization/methods , Ferric Compounds/chemical synthesis , Graphite/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Macromolecular Substances/chemistry , Magnetics , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
20.
J Colloid Interface Sci ; 345(2): 228-33, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20167329

ABSTRACT

A novel MnO(2)-pillared Ni(2+)-Fe(3+) layered double hydroxides nanocomposite has been successfully fabricated using an intercalation/reduction reaction followed by heating treatment. The structural evolution of the samples obtained at different stages has been characterized by XRD, TEM, XPS, IR and N(2) adsorption-desorption. The layered structure of MnO(2)-pillared Ni(2+)-Fe(3+) layered double hydroxides nanocomposite can be maintained at 300 °C, and the obtained material has a large surface area of 202 m(2) g(-1). Electrochemical studies indicate that the material obtained by heating at 200 °C exhibits an ideal capacitive behavior and good cycling property in 1 mol L(-1) Na(2)SO(4) aqueous solution, and the specific capacitance value was 190 F g(-1) at a scan rate of 5 mV s(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...