Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.987
Filter
1.
Inorg Chem ; 63(26): 12240-12247, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946338

ABSTRACT

An unusual crystalline porous framework constructed from four types of cages, including all-inorganic Keggin-type polyoxometalate (POM) cages [H3W12O40]5-, organic hexamethylenetetramine (Hmt) cages, nanosized silver-Hmt coordination cages, and giant POM-silver-Hmt cages, was hydrothermally synthesized and structurally characterized. The framework features a highly symmetrical structure with one-dimensional nanoscale channels and holds good thermal/solvent stability, which endow it with proton conduction properties and heterogeneous catalytic activity for pyrazole. This paper not only contributes to broadening the structural diversity of cage-based crystalline porous framework materials but also sheds new light on the design of new functional framework materials.

2.
Angew Chem Int Ed Engl ; : e202403196, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972846

ABSTRACT

Photoactive formamidinium lead triiodide (α-FAPbI3) perovskite has dominated the prevailing high-performance perovskite solar cells (PSCs), normally for those spin-coated, conventional n-i-p structured devices. Unfortunately, α-FAPbI3 has not been made full use of its advantages in inverted p-i-n structured PSCs fabricated via blade-coating techniques owing to uncontrollable crystallization kinetics and complicated phase evolution of FAPbI3 perovskites. Herein, a customized crystal surface energy regulation strategy has been innovatively developed by incorporating 0.5 mol% of N-aminoethylpiperazine hydroiodide (NAPI) additive into α-FAPbI3 crystal-derived perovskite ink, which enabled the formation of phase-pure, highly-oriented α-FAPbI3 films. We deciphered the phase transformation mechanisms and crystallization kinetics of blade-coated α-FAPbI3 perovskite films via combining a series of in-situ characterizations. Interestingly, the strong chemical interactions between the NAPI and inorganic Pb-I framework help to reduce the surface energy of (100) crystal plane by 42%, retard the crystallization rate and lower the formation energy of α-FAPbI3. The resultant blade-coated inverted PSCs based on (100)-oriented α-FAPbI3 perovskite films realized promising efficiencies up to 24.16% (~26.5% higher than that of the randomly-oriented counterparts), accompanied by improved operational stability. This result represented one of the best performances reported to date for FAPbI3-based inverted PSCs fabricated via scalable deposition methods.

4.
Neural Regen Res ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38993123

ABSTRACT

ABSTRACT: AAV-PHP.eB is an artificial adeno-associated virus (AAV) that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically. While AAV-PHP.eB has been used in various disease models, its cellular tropism in cerebrovascular diseases remains unclear. In the present study, we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor (bFGF) gene therapy. Mice were injected intravenously with AAV-PHP.eB either 14 days prior to (pre-stroke) or 1 day following (post-stroke) transient middle cerebral artery occlusion. Notably, we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen (mNG). This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A (Ly6A). Furthermore, AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke. Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.

5.
Biol Trace Elem Res ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995434

ABSTRACT

The integrity of colonic gland cells is a prerequisite for normal colonic function and maintenance. To evaluate the underlying injury mechanisms in colonic gland cells induced by excessive fluoride (F), forty-eight female Kunming mice were randomly allocated into four groups and treated with different concentrations of NaF (0, 25, 50, and 100 mg F-/L) for 70 days. As a result, the integrity of the colonic mucosa and the cell layer was seriously damaged after F treatment, as manifested by atrophy of the colonic glands, colonic cell surface collapse, breakage of microvilli, and mitochondrial vacuolization. Alcian blue and periodic acid Schiff staining revealed that F decreased the number of goblet cells and glycoprotein secretion. Furthermore, F increased the protein expression of TLR4, NF-κB, and ERK1/2 and decreased IL-6, interfered with NF-κB signaling, following induced colonic gland cells inflammation. The accumulation of F inhibited proliferation via the JAK/STAT signaling pathway, as characterized by decreased mRNA and protein expression of JAK, STAT3, STAT5, PCNA, and Ki67 in colon tissue. Additionally, the expression of CDK4 was up-regulated by increased F concentration. In conclusion, excessive F triggered colonic inflammation and inhibited colonic gland cell proliferation via regulation of the NF-κB and JAK/STAT signaling pathways, leading to histopathology and barrier damage in the colon. The results explain the damaging effect of the F-induced inflammatory response on the colon from the perspective of cell proliferation and provide a new idea for explaining the potential mechanism of F-induced intestinal damage.

6.
Sci Rep ; 14(1): 15688, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977764

ABSTRACT

Iodine-129, which is a promising tracer for dating old groundwater, has been used as a tracer for deep upwelling groundwater. The nuclide is expected to be one of the key factors for site selection for high-level radioactive waste disposal, which is a global societal issue. The pre-anthropogenic 129I/127I ratio for marine iodine is (1.50 ± 0.15) × 10-12, which could be considered the initial value for 129I dating. This study identifies the challenges in groundwater age dating using 129I/127I. We measured the ratios of 129I/127I and 81Kr/Kr and concentration of 4He in groundwater from boreholes on the northern coast of Japan. The 129I dating results were not coincident with the other groundwater dating results. The iodine in the groundwater was inferred to be released in situ from marine organisms in sediments of various ages. We estimated that the primordial iodine ratio originating from seawater was ~ 1 × 10-13 (8 × 10-14 ~ 2 × 10-13). The groundwater age deduced from the 129I/127I ratio using this value agrees with other groundwater dating results.

7.
Inorg Chem ; 63(28): 12803-12809, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38957131

ABSTRACT

A high-nuclear Co-added polyoxometalate (CoAP) was synthesized via a hydrothermal reaction: H14.5K9Na7.5-{[Co8(µ2-OH)(µ3-OH)2(H2O)2(Co(H2O)GeW6O26)(B-α-GeW9O34)2][BO(OH)2][Co12(µ2-OH)(µ3-OH)5(H2O)3(Co(H2O)GeW6O26)(GeW6O26)(B-α-GeW9O34)]}·46H2O (1). The polyoxoanion of 1 contains a large Co20 cluster gathered by lacunary GeW6O26 and GeW9O34 subunits. 1 represents a one-dimensional (1D) chain formed by adjacent polyoxoanions coupling through a CoO6 double bridge, showing the first example of a high-nuclear CoAP-based inorganic chain. 1 served as an efficient electrocatalyst in oxygen evolution reactions (OERs).

8.
Adv Mater ; : e2403584, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897229

ABSTRACT

Despite multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters with small full-width at half maximum are attractive for wide color-gamut display and eye-protection lighting applications, their inefficient reverse intersystem crossing (RISC) process and long exciton lifetime induce serious efficiency roll-off, which significantly limits their development. Herein, a novel device concept of building highly efficient tricomponent exciplex with multiple RISC channels is proposed to realize reduced exciton quenching and enhanced upconversion of nonradiative triplet excitons, and subsequently used as a host for high-performance MR-TADF organic light-emitting diodes (OLEDs). Compared with traditional binary exciplex, the tricomponent exciplex exhibits obviously improved photoluminescence quantum yield, emitting dipole orientation and RISC rate constant, and a record-breaking external quantum efficiency (EQE) of 30.4% is achieved for tricomponent exciplex p-PhBCzPh: PO-T2T: DspiroAc-TRZ (50: 20: 30) based OLED. Remarkably, maximum EQEs of 36.2% and 40.3% and ultralow efficiency roll-off with EQEs of 26.1% and 30.0% at 1000 cd m-2 are respectively achieved for its sky-blue and pure-green MR-TADF doped OLEDs. Additionally, the blue emission unit hosted by tricomponent exciplex is combined with an orange-red TADF emission unit to achieve a double-emission-layer blue-hazard-free warm white OLED with an EQEmax of 30.3% and stable electroluminescence spectra over a wide brightness range.

9.
Analyst ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904993

ABSTRACT

Vertical flow assay (VFA) is an effective point-of-care (POC) diagnostic tool for widespread application. Nevertheless, the lack of multi-target detection and multi-signal readout capability still remains a challenge. Herein, a brand new VFA scheme for multi-target saliva detection based on electronic tags was proposed, where AlGaN/GaN HEMT sensors modified with different bio-receptors as electronic tags endowed the VFA with multi-target detection capability. In addition, the use of electronic tags instead of optical tags allowed the VFA to simultaneously carry out direct multi-target readouts, which ensure effective POC diagnostics for saliva analysis. Moreover, by integrating a hydrophilically optimized micro-sieve, impurities like sticky filaments, epidermal cells and other large-scale charged particles in saliva were effectively screened, which enabled the direct detection of saliva using AlGaN/GaN HEMT sensors. Glucose, urea, and cortisol were selected to verify the feasibility of the multi-target e-VFA scheme, and the results showed that the limit of detection (LOD) was as low as 100 aM. The linear response was demonstrated in the dynamic range of 100 aM to 100 µM, and the specificity, long-term stability and validity of the actual saliva test were also verified. These results demonstrated that the as-proposed e-VFA has potential for application in saliva detection for simultaneous multi-target detection, and it is expected to achieve the real-time detection of more biological targets in saliva.

10.
Cell Rep ; 43(7): 114387, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896777

ABSTRACT

The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.

11.
Int Immunopharmacol ; 137: 112412, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38901242

ABSTRACT

OBJECTIVE: Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is caused by an imbalance between pathogens and impaired host immune responses. Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) are the two major pathogens that cause NTM-PD. In this study, we sought to dissect the transcriptomes of peripheral blood immune cells at the single-cell resolution in NTM-PD patients and explore potential clinical markers for NTM-PD diagnosis and treatment. METHODS: Peripheral blood samples were collected from six NTM-PD patients, including three MAB-PD patients, three MAC-PD patients, and two healthy controls. We employed single-cell RNA sequencing (scRNA-seq) to define the transcriptomic landscape at a single-cell resolution. A comprehensive scRNA-seq analysis was performed, and flow cytometry was conducted to validate the results of scRNA-seq. RESULTS: A total of 27,898 cells were analyzed. Nine T-cells, six mononuclear phagocytes (MPs), and four neutrophil subclusters were defined. During NTM infection, naïve T-cells were reduced, and effector T-cells increased. High cytotoxic activities were shown in T-cells of NTM-PD patients. The proportion of inflammatory and activated MPs subclusters was enriched in NTM-PD patients. Among neutrophil subclusters, an IFIT1+ neutrophil subcluster was expanded in NTM-PD compared to healthy controls. This suggests that IFIT1+ neutrophil subcluster might play an important role in host defense against NTM. Functional enrichment analysis of this subcluster suggested that it is related to interferon response. Cell-cell interaction analysis revealed enhanced CXCL8-CXCR1/2 interactions between the IFIT1+ neutrophil subcluster and NK cells, NKT cells, classical mononuclear phagocytes subcluster 1 (classical Mo1), classical mononuclear phagocytes subcluster 2 (classical Mo2) in NTM-PD patients compared to healthy controls. CONCLUSIONS: Our data revealed disease-specific immune cell subclusters and provided potential new targets of NTM-PD. Specific expansion of IFIT1+ neutrophil subclusters and the CXCL8-CXCR1/2 axis may be involved in the pathogenesis of NTM-PD. These insights may have implications for the diagnosis and treatment of NTM-PD.


Subject(s)
Adaptor Proteins, Signal Transducing , Neutrophils , RNA-Binding Proteins , Single-Cell Analysis , Transcriptome , Humans , Neutrophils/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Male , Middle Aged , Female , Adaptor Proteins, Signal Transducing/genetics , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/blood , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium avium Complex/immunology , Aged , Mycobacterium abscessus/immunology , T-Lymphocytes/immunology , Adult
12.
Anal Methods ; 16(26): 4381-4386, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38896043

ABSTRACT

The abundant bio-markers in saliva provide a new option for non-invasive testing. However, due to the presence of impurities in the saliva background, most of the existing saliva testing methods rely on pre-processing, which limits the application of saliva testing as a convenient means of testing in daily life. Herein, a disposable-gate AlGaN/GaN high electron mobility transistor (HEMT) biosensor integrated with a micro-sieve was introduced to solve the problem of signal interference caused by charged impurities in saliva for HEMT based biosensors, where the micro-sieve was utilized as a pre-treatment unit to remove large particles of impurities from saliva through the size effect and thus greatly improving the accuracy of detection. The experimental results showed that the HEMT based biosensor has excellent linearity (R2 = 0.9977) and a high sensitivity of 6.552 µA dec-1 for urea sensing from 1 fM to 100 mM in 0.1× PBS solution. When it comes to artificial saliva detection, compared to the HEMT sensor without the micro-sieve (sensitivity = 3.07432 µA dec-1), the sensitivity of the HEMT sensor integrated with the micro-sieve showed almost no change. Moreover, to verify that urea can be detected in actual saliva, urea is sensed directly in human saliva. The addition of the microsieve module provides a new way for biosensors to detect specific markers in saliva in real time, and the designed HEMT biosensor with the microsieve function has a wide range of application potential in rapid saliva detection.


Subject(s)
Biosensing Techniques , Gallium , Saliva , Transistors, Electronic , Urea , Gallium/chemistry , Gallium/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Urea/analysis , Urea/chemistry , Saliva/chemistry , Humans , Aluminum Compounds/chemistry , Aluminum Compounds/analysis , Limit of Detection , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Equipment Design
13.
Inorg Chem ; 63(27): 12469-12474, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38912662

ABSTRACT

Two Mn(II)-bridged Silverton-type {UMo12O42}-based polyoxomolybdates with different three-dimensional structures, Na6(H2O)12[Mn(UMo12O42)] (NaMn) and (NH4)2[K2Na6(µ4-O)2(H2O)1.2Mn(UMo12O42)]·4.6H2O (KMn), were hydrothermally synthesized and further characterized, demonstrating a feasible strategy for the assembly of Silverton-type polyoxomolybdates. Additionally, NaMn is demonstrated to be a good heterogeneous catalyst in the condensation cyclization reaction of hydrazines and 1,3-diketones, and a range of valuable pyrazoles were produced in up to 99% yield.

14.
Drug Des Devel Ther ; 18: 1799-1810, 2024.
Article in English | MEDLINE | ID: mdl-38828025

ABSTRACT

Purpose: Oxycodone is a potent µ- and κ-opioid receptor agonist that can relieve both somatic and visceral pain. We assessed oxycodone- vs sufentanil-based multimodal analgesia on postoperative pain following major laparoscopic gastrointestinal surgery. Methods: In this randomised double-blind controlled trial, 40 adult patients were randomised (1:1, stratified by type of surgery) to receive oxycodone- or sufentanil-based multimodal analgesia, comprising bilateral transverse abdominis plane blocks, intraoperative dexmedetomidine infusion, flurbiprofen axetil, and oxycodone- or sufentanil-based patient-controlled analgesia. The co-primary outcomes were time-weighted average (TWA) of visceral pain (defined as intra-abdominal deep and dull pain) at rest and on coughing during 0-24 h postoperatively, assessed using the numerical rating scale (0-10) with a minimal clinically important difference of 1. Results: All patients completed the study (median age, 64 years; 65% male) and had adequate postoperative pain control. The mean (SD) 24-h TWA of visceral pain at rest was 1.40 (0.77) in the oxycodone group vs 2.00 (0.98) in the sufentanil group (mean difference=-0.60, 95% CI, -1.16 to -0.03; P=0.039). Patients in the oxycodone group had a significantly lower 24-h TWA of visceral pain on coughing (2.00 [0.83] vs 2.98 [1.26]; mean difference=-0.98, 95% CI, -1.66 to -0.30; P=0.006). In the subgroup analyses, the treatment effect of oxycodone vs sufentanil on the co-primary outcomes did not differ in terms of age (18-65 years or >65 years), sex (female or male), or type of surgery (colorectal or gastric). Secondary outcomes (24-h TWA of incisional and shoulder pain, postoperative analgesic usage, rescue analgesia, adverse events, and patient satisfaction) were comparable between groups. Conclusion: For patients undergoing major laparoscopic gastrointestinal surgery, oxycodone-based multimodal analgesia reduced postoperative visceral pain in a statistically significant but not clinically important manner. Trial Registration: Chinese Clinical Trial Registry (ChiCTR2100052085).


Subject(s)
Analgesics, Opioid , Laparoscopy , Oxycodone , Pain, Postoperative , Visceral Pain , Adult , Aged , Female , Humans , Male , Middle Aged , Analgesia, Patient-Controlled , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Digestive System Surgical Procedures/adverse effects , Double-Blind Method , Flurbiprofen/analogs & derivatives , Laparoscopy/adverse effects , Oxycodone/administration & dosage , Oxycodone/therapeutic use , Pain, Postoperative/drug therapy , Sufentanil/administration & dosage , Visceral Pain/drug therapy
15.
Integr Med Res ; 13(2): 101045, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831890

ABSTRACT

Background: Post-viral olfactory dysfunction (PVOD) is the common symptoms of long COVID, lacking of effective treatments. Traditional Chinese medicine (TCM) is claimed to be effective in treating olfactory dysfunction, but the evidence has not yet been critically appraised. We conducted a systematic review to evaluate the effectiveness and safety of TCM for PVOD. Methods: We searched eight databases to identified clinical controlled studies about TCM for PVOD. The Cochrane risk of bias tools and GRADE were used to evaluate the quality of evidence. Risk ratio (RR), mean differences (MD), and 95 % confidence interval (CI), were used for effect estimation and RevMan 5.4.1 was used for data analysis. Results: Six randomized controlled trials (RCTs) (545 participants), two non-randomized controlled trials (non-RCTs) (112 participants), and one retrospective cohort study (30 participants) were included. The overall quality of included studies was low. Acupuncture (n = 8) and acupoint injection (n = 3) were the mainly used TCM therapies. Five RCTs showed a better effect in TCM group. Four trials used acupuncture, and three trials used acupoint injection. The results of two non-RCTs and one cohort study were not statistically significant. Two trials reported mild to moderate adverse events (pain and brief syncope caused by acupuncture or acupoint injection). Conclusions: Limited evidence focus on acupuncture and acupoint injection for PVOD and suggests that acupuncture and acupoint injection may be effective in improving PVOD. More well-designed trials should focus on acupuncture to confirm the benefit. Protocol registration: The protocol of this review was registered at PROSPERO: CRD42022366776.

16.
Opt Express ; 32(8): 13851-13863, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859344

ABSTRACT

This paper introduces an innovative, compact, and high-gain metasurface antenna, covering both the 24 GHz millimeter wave (mmWave) radar band and the 5 G n257 and n258 bands. The proposed metasurface antenna consists of a wideband stacked patch antenna and a dual-layer metasurface to focus its radiation beams for multiple mmWave bands. The operating frequency can be slightly shifted by altering the distance between the feeder and the metasurface. The distribution of the metasurface unit cells is designed based on a simplified phase compensation formula. The dimension of the fabricated feeder is 6 mm × 6 mm, and the metasurface occupies a 65 mm × 65 mm radome area. Experimental results demonstrate a wide bandwidth from 23.5 GHz to 29.1 GHz for the feeder, and impressive maximum gains of 19.7 dBi and 19.5 dBi for the lower band and higher band of the metasurface antenna are achieved simultaneously. The frequency reconfiguration ability was characterized by a 750 MHz frequency shift with every 1 mm distance adjustment. The compact size and high gain performance of the proposed design underscore its potential for practical applications in millimeter wave joint communication and radar sensing systems.

17.
Vet Res ; 55(1): 68, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807225

ABSTRACT

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Release , rab GTP-Binding Proteins , Animals , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , Swine , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mice , Pseudorabies/virology , Virus Assembly/physiology , Swine Diseases/virology , Cell Line
18.
Food Chem ; 454: 139732, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38815327

ABSTRACT

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of flavonoids highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and flavonols (33.90 to 83.16 mg/kg FW). The volatile compounds with higher odor active value were selected to describe the aroma of spine grapes. Hexanal, (E)-2-hexenal and (E, Z)-2,6-nonadienal contributed to the higher herbaceous flavor to Baiputao and Ziqiu. ß-Damascenone and (E)-2-nonenal gave Baiputao a flavor with more floral, fruity and earthy. Their characteristic flavor compounds were subsequently revealed using multivariate statistical analysis. The results helped producers to further develop and utilize the spine grapes.


Subject(s)
Flavonoids , Flavoring Agents , Fruit , Gas Chromatography-Mass Spectrometry , Metabolomics , Vitis , Volatile Organic Compounds , Vitis/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , China , Flavoring Agents/chemistry , Flavoring Agents/analysis , Flavoring Agents/metabolism , Fruit/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Taste , Odorants/analysis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Humans
19.
Nanoscale ; 16(24): 11518-11523, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38819267

ABSTRACT

Three structurally new polyoxometalate-templated silver clusters, homometallic [(SiW9O34)@Ag24(iPrS)11(DPPP)6Cl]2(SiW12O40) (Ag24), heterometallic [(SiW9O34)@Ag22Cu(iPrS)11(DPPP)6Cl](SbF6)2 (Ag22Cu) and {Ag16(iPrS)6(DPPP)8(CH3COO)4[Co4(OH)3(H2O)SiW9O33]2}·(CH3CN)4 (Ag16Co8) (iPrS- = isopropanethiolate, DPPP = 1,3-bis(diphenylphosphino)propane, SbF6- = hexafluoroantimonate) have been successfully synthesized using a facile solvothermal approach. The introduction of copper and cobalt ions can induce obvious changes in the molecular configuration of the obtained clusters, leading to distinct temperature-dependent photoluminescence and photothermal conversion properties.

20.
Mater Horiz ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747452

ABSTRACT

The development of effective and novel flame retardants has been attracting considerable attention in extenuating the fire threat of flammable polymer materials including the widely-used epoxy resins. In this work, we pioneeringly report the construction of transition-metal-substituted polyoxometalate-ionic liquids (tmsPOM-ILs) as effective flame retardants, which consist of tetra-metal-containing POMs ([M4(H2O)2(PW9O34)2]10-, M4P2, M = Ni, Cu) anions and tetra-n-heptylammonium [(n-C7H15)4N+, THPA] cations. The resulting tmsPOM-ILs exhibited remarkably improved fire-safety of the epoxy resin (EP) matrix and even at a loading amount of as low as 3 wt%, the flame retardancy efficiency was even higher than that of commercial flame retardants (aluminum hydroxide (ATH), triphenyl phosphate (TPP), and decabromodiphenyl ethane (DBDPE)). Physicochemical and mechanistic studies revealed that the remarkable flame retardancy performance of the tmsPOM-ILs reported is due to their excellent epoxy matrix compatibility and remarkable catalytic charring ability. This work opens up a brand-new research direction of developing next-generation compatible and effective tmsPOM-based molecular flame retardants at the molecular level.

SELECTION OF CITATIONS
SEARCH DETAIL
...