Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.727
Filter
1.
Mol Inform ; : e202300336, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031899

ABSTRACT

Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost-effective in silico prediction of KIs drug repositioning via analyzing cross-docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross-docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT-PI3K-mTOR pathway with IC50 values of 3.3, 3.2 and 5.8 µM. Further cell assays showed IC50 values of 0.2, 1.2 and 0.6 µM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via in silico method is feasible.

2.
Gut Liver ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021227

ABSTRACT

Background/Aims: Bile duct invasion (BDI) is rarely observed in patients with advanced hepatocellular carcinoma (HCC), leading to hyperbilirubinemia. However, the efficacy of pretreatment biliary drainage for HCC patients with BDI and obstructive jaundice is currently unclear. Thus, the aim of this study was to assess the effect of biliary drainage on the prognosis of these patients. Methods: We retrospectively enrolled a total of 200 HCC patients with BDI from multicenter cohorts. Patients without obstructive jaundice (n=99) and those who did not undergo HCC treatment (n=37) were excluded from further analysis. Finally, 64 patients with obstructive jaundice (43 subjected to drainage and 21 not subjected to drainage) were included. Propensity score matching was then conducted. Results: The biliary drainage group showed longer overall survival (median 10.13 months vs 4.43 months, p=0.004) and progression-free survival durations (median 7.00 months vs 1.97 months, p<0.001) than the non-drainage group. Multivariate analysis showed that biliary drainage was a significantly favorable prognostic factor for overall survival (hazard ratio, 0.42; p=0.006) and progression-free survival (hazard ratio, 0.30; p<0.001). Furthermore, in the evaluation of first response after HCC treatment, biliary drainage was beneficial (p=0.005). Remarkably, the durations of overall survival (p=0.032) and progression-free survival (p=0.004) were similar after propensity score matching. Conclusions: Biliary drainage is an independent favorable prognostic factor for HCC patients with BDI and obstructive jaundice. Therefore, biliary drainage should be contemplated in the treatment of advanced HCC with BDI to improve survival outcomes.

3.
Anal Chem ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023129

ABSTRACT

Single-dispersed atoms (SDAs) as catalysts have drawn extensive attention due to their ultimate atom utilization efficiency and desirable catalytic capability. Atomic clusters (ACs) with potential multiple enzyme-like activities also display great practicability in catalysis-based biosensing. In this work, hybrid Mn ACs/SDAs were implanted in the frameworks of defect-engineered MIL 101(Cr) modulated by excess acetic acid, with a high loading capability of 13.9 wt %. Distinctively, Mn SDAs display weak superoxide dismutase (SOD)-like activity for specifically eliminating superoxide anion (O2•-), while Mn ACs/SDAs display both catalase-like and SOD-like activities for remarkable elimination of total reactive oxygen species (ROS) due to the cooperative effect of the two atom-scale catalytic sites. Thus, Mn ACs/SDAs can efficiently inhibit the chemiluminescent (CL) emission of multiple ROS-mediated luminol systems with a superior quenching rate of 85.5%. To validate the practicability of Mn ACs/SDAs for a sensitive CL assay, an immunoassay method was established to detect acetamiprid by using Mn ACs/SDAs as signal quenchers, which displayed a quantification range of 10 pg mL-1-25 ng mL-1 and a detection limit of 3.3 pg mL-1. This study paves an avenue for developing ACs/SDAs with multiple antioxidant activities that are suitable for application in biosensing.

4.
Nutrients ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999822

ABSTRACT

BACKGROUND: Conflicting results have been reported on the association of dietary unsaturated fatty acids (UFAs) with longevity and cardiovascular health. Most previous studies have focused only on the amount of UFAs consumed, not the timing of intake. METHODS: This prospective cohort study used data from 30,136 adults aged 18 years and older. Intakes of UFAs by meal time and types were assessed by a 24-h dietary recall for two days. The covariate-adjusted survey-weighted Cox proportional hazards models were performed to evaluate the associations of dietary total unsaturated fatty acid (TUFA), polyunsaturated fatty acid (PUFA), and monounsaturated fatty acid (MUFA) intakes throughout the day and three meals with mortality. RESULTS: During a median of 10.0 years of follow-up, 4510 total deaths occurred. All-cause mortality decreased with increasing intakes at dinner of TUFA (HR: 0.87 [0.77-0.98]), PUFA (HR: 0.81 [0.73-0.91]), and MUFA (HR: 0.88 [0.77-0.99]). With an increased intake of PUFA at dinner, CVD mortality showed a decreasing trend. However, the inverted L-shaped non-linear trend in all-cause mortality was found with increasing intake at breakfast of TUFA (HR: 1.35 [1.17-1.57], Q3 vs. Q1), PUFA (HR: 1.30 [1.13-1.50]), and MUFA (HR: 1.28 [1.13-1.45]). Meanwhile, increased breakfast intake of UFAs was associated with increased CVD and heart disease mortality. CONCLUSIONS: Meal timing influences the association of UFAs with all-cause and CVD-related mortality.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Unsaturated , Meals , Humans , Male , Female , Prospective Studies , Cardiovascular Diseases/mortality , Middle Aged , Adult , Fatty Acids, Unsaturated/administration & dosage , Follow-Up Studies , Aged , Fatty Acids, Monounsaturated/administration & dosage , Proportional Hazards Models , Time Factors , Diet , Cause of Death , Young Adult
5.
Org Lett ; 26(29): 6191-6196, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39007534

ABSTRACT

Disclosed herein is a rhodium(III)-catalyzed intramolecular cyclization of ynamides with propargyl esters. A variety of highly functionalized 2,5-dihydropyrroles were obtained in moderate to good yields with high E/Z selectivities. Subsequent oxidation of the products gave valuable pyrrole derivatives. Additionally, scale-up reactions and late-stage derivatizations highlight the potential synthetic utility of this methodology.

6.
Signal Transduct Target Ther ; 9(1): 181, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992067

ABSTRACT

Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.


Subject(s)
Bortezomib , Cell Cycle Proteins , Mitosis , Proteasome Endopeptidase Complex , Protein-Tyrosine Kinases , Pyroptosis , Pyroptosis/drug effects , Humans , Mice , Animals , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Mitosis/drug effects , Mitosis/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Bortezomib/pharmacology , Cell Line, Tumor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Proteasome Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrazoles/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Xenograft Model Antitumor Assays , Gasdermins , Pyrimidinones
7.
Exp Dermatol ; 33(7): e15136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973310

ABSTRACT

Interstitial lung disease (ILD) has been identified as a prevalent complication and significant contributor to mortality in individuals with pemphigus. In this study, a murine model of pemphigus was developed through the subcutaneous administration of serum IgG obtained from pemphigus patients, allowing for an investigation into the association between pemphigus and ILD. Pulmonary interstitial lesions were identified in the lungs of a pemphigus mouse model through histopathology, RT-qPCR and Sircol assay analyses. The severity of these lesions was found to be positively associated with the concentration of IgG in the injected serum. Additionally, DIF staining revealed the deposition of serum IgG in the lung tissue of pemphigus mice, indicating that the subcutaneous administration of human IgG directly impacted the lung tissue of the mice, resulting in damage. This study confirms the presence of pulmonary interstitial lesions in the pemphigus mouse model and establishes a link between pemphigus and ILD.


Subject(s)
Disease Models, Animal , Immunoglobulin G , Lung Diseases, Interstitial , Pemphigus , Pemphigus/pathology , Animals , Mice , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/pathology , Immunoglobulin G/blood , Humans , Lung/pathology , Skin/pathology , Female , Mice, Inbred BALB C
9.
J Neurol Surg B Skull Base ; 85(4): 389-396, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966302

ABSTRACT

Objective Biochemical remission rates of endoscopic endonasal transsphenoidal surgery (EETS) and its associated predictive factors were evaluated in patients with somatotrophin pituitary adenomas. Methods The patients who underwent EETS in Jinling Hospital were identified between 2011 and 2020. The surgeons' experience, preoperative insulin-like growth factor 1 (IGF-1), basal growth hormone (GH) levels, nadir GH levels, and the tumor characteristics were analyzed for their relationships with endocrine outcomes. Total 98 patients were included for single factor analysis and regression analysis. They were divided into three groups according to the admission chronologic order. Results The overall remission rate of the patients was 57% (56/98) for all the patients over 10 years. In the single factor analysis, we found that the tumor size, cavernous invasion, and sellar invasion were valuable to predict the endocrine outcome after surgery. As for the suprasellar invasion, no significant difference was found between the noninvasive group and the invasive group. The preoperative IGF-1 level ( p = 0.166), basal GH level ( p = 0.001), and nadir GH level ( p = 0.004) were also different between the remission group and the nonremission group in the single factor analysis. The logistic regression analysis indicated that the preoperative nadir GH (odds ratio = 0.930, 95% confidence interval = 0.891-0.972, p = 0.001) was a significant predictor for the endocrine outcomes after surgery. Conclusion The surgeons' experience is an important factor that can affect the patients' endocrine outcomes after surgery. The macroadenomas with lateral invasion are more difficult to cure. Patients with higher preoperative nadir GH levels are less likely to achieve remission.

10.
Int J Biol Macromol ; 276(Pt 2): 134025, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033888

ABSTRACT

Bioenvironmental and biological factors have the potential to contribute to the development of glioma, a type of brain tumor. Recent studies have suggested that a unique circular RNA called circCSNK1G3 could play a role in promoting the growth of glioma cells. It does this by stabilizing a specific microRNA called miR-181 and reducing the expression of a tumor-suppressor gene known as chromobox protein homolog 7 (CBX7). To further investigate circCSNK1G3 and its effects on glioma, we utilized a nanoplatform called adeno-associated virus (AAV)-RNAi.To explore the functional implications of circCSNK1G3, we employed siRNA to silence its expression. Along with these effects, the silencing of circCSNK1G3 led to a depletion of miR-181d and an upregulation of CBX7. When we introduced miR-181d mimics, which artificially increase the levels of miR-181d, the anti-glioma cell activity induced by circCSNK1G3 siRNA was almost completely reversed. Conversely, inhibiting miR-181d mimicked the effects of circCSNK1G3 silencing. Moreover, when we overexpressed circCSNK1G3 in glioma cells, we observed an elevation of miR-181d and a depletion of CBX7. We found that the growth of A172 xenografts (tumors) carrying circCSNK1G3 shRNA was significantly inhibited. In these xenograft tissues, we detected a depletion of circCSNK1G3 and miR-181d, as well as an upregulation of CBX7.

11.
Nat Commun ; 15(1): 6199, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043667

ABSTRACT

Nanoporous carbons with tailorable nanoscale texture and long-range ordered structure are promising candidates for energy, environmental and catalytic applications, while the current synthetic methods do not allow elaborate control of local structure. Here we report a salt-assisted strategy to obtain crystalline nanocarbon from direct carbonization of metal-organic frameworks (MOFs). The crystalline product maintains a highly ordered two-dimensional (2D) stacking mode and substantially differs from the traditional weakly ordered patterns of nanoporous carbons upon high-temperature pyrolysis. The MOF-derived crystalline nanocarbon (MCC) comes with a high level of nitrogen and oxygen terminating the 2D layers and shows an impressive performance as a carbocatalyst in Fenton-like reaction for water purification. The successful preparation of MCC illustrates the possibility to discover other crystalline heteroatom-doped carbon phases starting from correctly designed organic precursors and appropriate templating reactions.

12.
Front Oncol ; 14: 1422634, 2024.
Article in English | MEDLINE | ID: mdl-39040438

ABSTRACT

Ultrasound-guided radiofrequency ablation (RFA) emerges as a minimally invasive strategy for papillary thyroid microcarcinoma (PTMC), offering advantages over traditional surgical approaches. RFA employs high-frequency electric currents under precise ultrasound guidance to ablate cancerous tissue. Clinical trials consistently demonstrate RFA's efficacy in tumor control and patient-reported outcomes. However, long-term studies are essential to validate its durability and monitor for potential complications. Collaborative efforts among various medical disciplines ensure procedural accuracy and comprehensive postoperative care. Technological innovations, such as enhanced ultrasound imaging and temperature control, promise to refine RFA's precision and effectiveness. Nevertheless, challenges persist, including the need for standardized protocols and comparative studies with traditional treatments. Future research should focus on long-term outcomes, patient selection criteria, and optimization of procedural techniques to solidify RFA's role in PTMC management. RFA presents a promising avenue for PTMC treatment, warranting further investigation and refinement in clinical practice.

13.
Comput Struct Biotechnol J ; 23: 2606-2614, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39006920

ABSTRACT

Cathepsin L (CTSL) is a promising therapeutic target for metabolic disorders. Current pharmacological interventions targeting CTSL have demonstrated potential in reducing body weight gain, serum insulin levels, and improving glucose tolerance. However, the clinical application of CTSL inhibitors remains limited. In this study, we used a combination of artificial intelligence and experimental methods to identify new CTSL inhibitors from natural products. Through a robust deep learning model and molecular docking, we screened 150 molecules from natural products for experimental validation. At a concentration of 100 µM, we found that 36 of them exhibited more than 50 % inhibition of CTSL. Notably, 13 molecules displayed over 90 % inhibition and exhibiting concentration-dependent effects. The molecular dynamics simulation on the two most potent inhibitors, Plumbagin and Beta-Lapachone, demonstrated stable interaction at the CTSL active site. Enzyme kinetics studies have shown that these inhibitors exert an uncompetitive inhibitory effect on CTSL. In conclusion, our research identifies Plumbagin and Beta-Lapachone as potential CTSL inhibitors, offering promising candidates for the treatment of metabolic disorders and illustrating the effectiveness of artificial intelligence in drug discovery.

14.
Stem Cells Dev ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001828

ABSTRACT

Traumatic injury to the spinal cord can lead to significant, permanent disability. Mammalian spinal cords are not capable of regeneration; in contrast, adult zebrafish are capable of such regeneration, fully recovering motor function. Understanding the mechanisms underlying zebrafish neuroregeneration may provide useful information regarding endogenous regenerative potential and aid in the development of therapeutic strategies in humans. DTXs regulate a variety of cellular processes. However, their role in neural regeneration has not been described. We found that zebrafish dtx2, encoding Deltex E3 ubiquitin ligase 2, is expressed in ependymo-radial glial cells in the adult spinal cord. After spinal cord injury, the heterozygous dtx2 mutant fish motor function recovered quicker than that of the wild-type controls. The mutant fish displayed increased ependymo-radial glial cell proliferation and augmented motor neuron formation. Moreover, her gene expression, downstream of Notch signaling, increased in Dtx2 mutants. Notch signaling inactivation by dominant-negative Rbpj abolished the increased ependymo-radial glia proliferation caused by Dtx2 deficiency. These results indicate that ependymo-radial glial proliferation is induced by Dtx2 deficiency, by activating Notch-Rbpj signaling to improve spinal cord regeneration and motor function recovery.

15.
Article in English | MEDLINE | ID: mdl-39037699

ABSTRACT

OBJECTIVE: This study aims to conduct an extensive analysis of autoimmune bullous diseases, particularly pemphigus vulgaris and bullous pemphigoid, in Shanghai, China, from 2016 to 2023. It seeks to understand the demographic profiles, comorbidities, mortality rates, risk factors, and socioeconomic impacts associated with autoimmune bullous disease. METHODS: A cross-sectional study design was employed, enrolling 1,072 patients. Diagnostic measures included clinical manifestations, histopathology, direct immunofluorescence, and serologic tests. The study also involved a detailed socioeconomic analysis and evaluation of occupational risks. RESULTS: The findings highlight a significant occupational risk in industries requiring enhanced safety measures, with a notable prevalence of autoimmune bullous disease among workers in these sectors. A considerable portion of the patients were from low-income backgrounds with limited literacy, indicating the economic burden of autoimmune bullous disease. A key discovery of the study is the potential pathological link between autoimmune bullous disease and interstitial lung disease. CONCLUSION: This research, one of the first comprehensive studies on autoimmune bullous disease in China, underscores the need for targeted healthcare strategies and further investigation into autoimmune bullous disease, particularly its relationship with interstitial lung disease.

16.
Article in English | MEDLINE | ID: mdl-39018293

ABSTRACT

Triarylamine-alt-fluorene (TAF) copolymers are widely used for hole injection and transport in organic electronics. Despite suggestions to planarize the triphenylamine moiety, little research has been conducted. Here, we report a comprehensive investigation of the effects of planarization on the electronic and transport properties of a model TAF polymer semiconductor core. We compared the conventional twisted-propeller N-4-methoxyphenyl-N,N-diphenylamine-4',4″-diyl (TA) unit and its planarized bridged analogue (bTA) where adjacent o,o'-positions are linked by 1,1-dimethylmethylene. We studied both polyelectrolyte and non-polyelectrolyte forms of this core in both doped and undoped states. We found that planarization leads to an unprecedented trap-free transport of holes, and a pronounced enhancement of their mobility in the undoped state though less so in the doped state. Planarization also induces a slight reduction in the ionization energy of the undoped polymer, consequently lowering the work function of the doped polymer. This is accompanied by small spectral shifts: a red shift in the first absorption band of the undoped polymer and a blue shift in the first absorption band of the polaron. Furthermore, this study unveils new fundamental features of TAF polymers: (i) Doping induces the formation of three polaron bands within the subgap. (ii) Absorption of both neutral and polaron segments exhibit a linear intensity relationship with doping level. (iii) Electrical conductivity reaches a maximum at the half-doped state, varying as σ ∼ (x (1 - x))3 for 0.1 ≲ x ≲ 0.9, where x is the doping level. Finally, we demonstrate the successful integration of these self-compensated hole-doped TAF polymers as efficient hole injection layers in organic semiconductor diodes.

17.
Hepatol Int ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020135

ABSTRACT

BACKGROUND: Previous studies have investigated the influence of diabetes on alcoholic liver cirrhosis patients, leaving its impact unclear. Thus, we conducted a study to reveal the association of diabetes and clinical outcomes of such patients. MATERIALS AND METHODS: We prospectively collected data from multicenter pertaining to 965 patients diagnosed with alcoholic liver cirrhosis, all of whom were admitted due to acute decompensation between 2015 and 2019. Risk of major precipitating factors and incidences of death or liver transplantation in patients with and without diabetes was comparatively assessed. Propensity score (PS) matching was performed at a 1:2 ratio for accurate comparisons. RESULTS: The mean age was 53.4 years, and 81.0% of the patients were male. Diabetes was prevalent in 23.6% of the cohort and was positively correlated with hepatic encephalopathy and upper gastrointestinal bleeding, although not statistically significant. During a median follow-up of 903.5 person-years (PYs), 64 patients with and 171 without diabetes died or underwent liver transplantation, with annual incidence of 33.6/100 PYs and 24.0/100 PYs, respectively. In the PS-matched cohort, the incidence of death or liver transplantation was 36.8/100 PYs and 18.6/100 PYs in the diabetes and matched control group, respectively. After adjusting for various factors, coexisting diabetes significantly heightened the risk of death or liver transplantation in the short and long term, in addition to prolonged prothrombin time, low serum albumin, elevated total bilirubin and creatinine, and decreased serum sodium levels. CONCLUSIONS: Diabetes increases the risk of death or liver transplantation in patients with alcoholic liver cirrhosis.

18.
Dig Dis Sci ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020183

ABSTRACT

OBJECTIVE: NK cells play a vital role in tumor immune resistance. Various factors affect NK cell activity. While NK cell dysfunction has been observed in numerous malignancies, the underlying mechanisms in gastric cancer remain unclear. METHOD: Flow cytometry was used to identify the phenotypic distribution and expression of activated receptors on NK cells. ELISA was used to determine the expression of cytokines. We examined the expression of NK cell-related genes and explored their association with survival and prognosis. Additionally, we conducted PCR detection of miR-552-5p expression levels in plasma exosomes of patients and investigated its correlation with phenotypic distribution and activated receptors. We used flow cytometry and ELISA to verify the role of miR-552-5p in NK cell dysfunction. Furthermore, we investigated the potential role of PD-1/PD-L1 in regulating NK cell dysfunction in patients' cells. RESULTS: We observed a significant decrease in the percentage of NKG2D and NKp30 and IFN-γ and TNF-α in patients than in healthy volunteers. Patients with low levels of CD56, CD16, NKG2D, and NKP46 exhibited poorer survival prognoses. Moreover, increased expression levels of plasma exosomal miR-552-5p in patients were negatively associated with NK cell phenotypic distribution and activated receptor expression. MiR-552-5p downregulated the secretion of perforin, granzyme, and IFN-γ as well as the expression of NKp30, NKp46, and NKG2D. Additionally, it suppressed the cytotoxicity of NK cells. The inhibitory effect of miR-552-5p, on NK cell function was reversed when anti-PD-L1 antibodies were used. CONCLUSION: Exosomal miR-552-5p targets the PD-1/PD-L1 axis, leading to impaired NK cell function.

19.
Article in English | MEDLINE | ID: mdl-39051127

ABSTRACT

BACKGROUND: Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS: Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS: Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS: Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.

20.
Small ; : e2403160, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051538

ABSTRACT

Diabetic wounds pose a persistent challenge due to their slow healing nature, primarily caused by bacterial infection and excessive reactive oxygen species (ROS)-induced inflammation. In this study, carbon dots with synergistic antibacterial and antioxidant properties, referred to as AA-CDs, are developed specifically for diabetic wound healing using a straightforward solvothermal method. By utilizing cost-effective precursors like citric acid and ascorbic acid, AA-CDs are engineered to possess tailored functions of photothermal sterilization and ROS scavenging. The resulting AA-CDs demonstrats broad-spectrum antibacterial activity, particularly against multidrug-resistant strains, along with efficient ROS scavenging both in solution and within cells. Additionally, AA-CDs exhibits a protective effect against oxidative stress-induced damage. Notably, with a high photothermal conversion efficiency (41.18%), AA-CDs displays heat-enhanced antioxidant performance, providing not only augmented ROS scavenging but also additional protection against oxidative stress, yielding a true "1 + 1 > 2" effect. To facilitate their use in vivo, AA-CDs are incorporated into a thermally responsive hydrogel, which exhibits evident anti-inflammatory properties by modulating inflammatory factors and significantly promots the healing of diabetic wounds. This study underscores the value of integrated platforms for diabetic wound healing and highlights the potential of versatile CDs as promising therapeutic agents in biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...