Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 652
Filter
1.
Commun Biol ; 7(1): 795, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951640

ABSTRACT

The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.


Subject(s)
Cell Membrane , Integrin beta3 , Mice, Knockout , Regeneration , Animals , Mice , Integrin beta3/metabolism , Integrin beta3/genetics , Cell Membrane/metabolism , Myocytes, Cardiac/metabolism , Male , Plasmalogens/metabolism , Signal Transduction , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Heart Injuries/metabolism , Heart Injuries/pathology , Heart Injuries/genetics , Cell Proliferation , Membrane Proteins/metabolism , Membrane Proteins/genetics
2.
Gerontology ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952108

ABSTRACT

INTRODUCTION: It is uncertain whether folic acid (FA) combined with docosahexaenoic acid (DHA) could improve cognitive performance. This study evaluated the effects of a 12-month FA and DHA supplementation, in combination or alone, on cognitive function, DNA oxidative damage, and mitochondrial function in participants with mild cognitive impairment (MCI). METHODS: This randomized, double-blind, placebo-controlled trial recruited MCI participants aged 60 years and older. Two hundred and eighty participants were randomly divided in equal proportion into four groups: FA+DHA (FA 800µg/d + DHA 800mg/d), FA (800µg/d), DHA (800mg/d), and placebo groups daily orally for 12 months. The primary outcome was cognitive function evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-RC). Cognitive tests and blood mechanism-related biomarkers were determined at baseline and 12 months. RESULTS: During the 12-month follow, scores of full intelligence quotient (FIQ) (ßDHA: 1.302, 95%CI: 0.615, 1.990, p < 0.001; ßFA: 1.992, 95%CI: 1.304, 2.679, p < 0.001; ßFA+DHA: 2.777, 95%CI: 2.090, 3.465, p < 0.001), verbal intelligence quotient, and some subtests of the WAIS-RC were significantly improved in FA+DHA and single intervention groups compared to the placebo group. Moreover, the FA and DHA intervention combination was superior to either intervention alone (p < 0.001). Meanwhile, FA, DHA and their combined use significantly decreased 8-OHdG level and increased mitochondrial DNA copy number compared to the placebo (p < 0.05). CONCLUSIONS: Supplementation of FA and DHA, alone or combined, for 12 months can improve cognitive function in MCI participants, possibly through mitigating DNA oxidative damage and enhancing mitochondrial function. Combined supplementation may provide more cognitive benefit than supplementation alone. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2000034351. Registered 3 July 2020 - Retrospectively registered, https://www.chictr.org.cn/showproj.html?proj=53345.

3.
ACS Nano ; 18(26): 17197-17208, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952325

ABSTRACT

Potassium ion batteries (PIBs) are a viable alternative to lithium-ion batteries for energy storage. Red phosphorus (RP) has attracted a great deal of interest as an anode for PIBs owing to its cheapness, ideal electrode potential, and high theoretical specific capacity. However, the direct preparation of phosphorus-carbon composites usually results in exposure of the RP to the exterior of the carbon layer, which can lead to the deactivation of the active material and the production of "dead phosphorus". Here, the advantage of the π-π bond conjugated structure and high catalytic activity of metal phthalocyanine (MPc) is used to prepare MPc@RP/C composites as a highly stable anode for PIBs. It is shown that the introduction of MPc greatly improves the uneven distribution of the carbon layer on RP, and thus improves the initial Coulombic efficiency (ICE) of PIBs (the ICE of FePc@RP/C is 75.5% relative to 62.9% of RP/C). The addition of MPc promotes the growth of solid electrolyte interphase with high mechanical strength, improving the cycle stability of PIBs (the discharge-specific capacity of FePc@RP/C is 411.9 mAh g-1 after 100 cycles at 0.05 A g-1). Besides, density functional theory theoretical calculations show that MPc exhibits homogeneous adsorption energies for multiple potassiation products, thereby improving the electrochemical reactivity of RP. The use of organic molecules with high electrocatalytic activity provides a universal approach for designing superior high-capacity, large-volume expansion anodes for PIBs.

4.
Int J Biol Macromol ; 275(Pt 1): 133490, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960257

ABSTRACT

Sandy soils are suffering from water loss and desertification, which severely restrict the development of local agriculture. In this work, an eco-friendly hydrogel composed of borax and locust bean gum was synthesized to enhance the water retention capacity of sandy soil and support agricultural development in arid regions. Locust bean gum/borax hydrogel with a 3D network structure exhibited great water-absorbing capacity (130.29 g/g) within 30 min. After mixing 0.9 wt% hydrogel with sandy soil, the maximum soil water content, water retention time, soil porosity and soil organic matter were increased by 32.03 %, 14 days, 38.9 % and 8.64 g/kg respectively. Little effect on soil microorganisms revealed barely toxicity. Furthermore, the hydrogel was confirmed to be biodegradable at 43.47 % after 4 weeks. According to the study, locust bean gum/borax hydrogel possesses good water absorbing capacity, soil water retention ability, soil optimization ability and low adverse environmental impact. Together, it is inferred that the hydrogel can improve the water retention capacity of sandy soil in arid areas, promoting plant growth in arid areas.

5.
Neuropeptides ; 107: 102440, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38875739

ABSTRACT

Pharmacological investigations have substantiated the potential of bifunctional opioid/cannabinoid agonists in delivering potent analgesia while minimizing adverse reactions. Peptide modulators of cannabinoid receptors, known as pepcans, have been investigated before. In this study, we designed a series of chimeric peptides based on pepcans and morphiceptin (YPFP-NH2). Here, we combined injections of pepcans and morphiceptin to investigate the combination treatment of opioids and cannabis and compared the analgesic effect with chimeric compounds. Subsequently, we employed computational docking to screen the compounds against opioid and cannabinoid receptors, along with an acute pain model, to identify the most promising peptide. Among these peptides, MP-13, a morphiceptin and pepcan-9 (PVNFKLLSH) construct, exhibited superior supraspinal analgesic efficacy in the tail-flick test, with an ED50 value at 1.43 nmol/mouse, outperforming its parent peptides and other chimeric analogs. Additionally, MP-13 displayed potent analgesic activity mediated by mu-opioid receptor (MOR), delta-opioid receptor (DOR), and cannabinoid type 1 (CB1) receptor pathways. Furthermore, MP-13 did not induce psychological dependence and gastrointestinal motility inhibition at the effective analgesic doses, and it maintained non-tolerance-forming antinociception throughout a 7-day treatment regimen, with an unaltered count of microglial cells in the periaqueductal gray region, supporting this observation. Moreover, intracerebroventricular administration of MP-13 demonstrated dose-dependent antinociception in murine models of neuropathic, inflammatory, and visceral pain. Our findings provide promising insights for the development of opioid/cannabinoid peptide agonists, addressing a crucial gap in the field and holding significant potential for future research and development. PERSPECTIVE: This article offers insights into the combination treatment of pepcans with morphiceptin. Among the chimeric peptides, MP-13 exhibited potent analgesic effects in a series of preclinical pain models with a favorable side-effect profile.

6.
Mol Cancer Ther ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940283

ABSTRACT

Delta-like ligand 3 (DLL3) is overexpressed in small-cell lung cancer (SCLC) and has been considered an attractive target for SCLC therapy. Rovalpituzumab tesirine (Rova-T) was the first DLL3-targeted antibody-drug conjugate (ADC) to enter clinical studies. However, serious adverse events limited progress in the treatment of SCLC with Rova-T. In this study, we developed a novel DLL-3-targeted ADC, FZ-AD005, by using DXd with potent cytotoxicity and a relatively better safety profile to maximize the therapeutic index. FZ-AD005 was generated by a novel anti-DLL3 antibody FZ-A038 and a valine-alanine (Val-Ala) dipeptide linker to conjugate DXd. Moreover, Fc-silencing technology was introduced in FZ-AD005 to avoid off-target toxicity mediated by FcγRs and showed negligible Fc-mediated effector functions in vitro. In preclinical evaluation, FZ-AD005 exhibited DLL3-specific binding and demonstrated efficient internalization, bystander killing, and excellent in vivo antitumor activities in cell line-derived xenografts (CDX) and patient-derived xenograft (PDX) models. FZ-AD005 was stable in circulation with acceptable pharmacokinetic profiles in cynomolgus monkeys. FZ-AD005 was well tolerated in rats and monkeys. The safety profile of FZ-AD005 was favorable and the highest non-severely toxic dose was 30 mg/kg in cynomolgus monkeys. In conclusion, FZ-AD005 has the potential to be a superior DLL3-targeted ADC with a wide therapeutic window and is expected to provide clinical benefits for the treatment of SCLC patients.

7.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38934866

ABSTRACT

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Subject(s)
Cell Proliferation , Checkpoint Kinase 1 , Disease Models, Animal , Myocardial Reperfusion Injury , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Humans , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , HEK293 Cells , Swine , Cellular Reprogramming , Thyroid Hormone-Binding Proteins , Regeneration , Protein Binding , Sus scrofa , Ventricular Remodeling/physiology , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Energy Metabolism/drug effects , Thyroid Hormones/metabolism , Metabolic Reprogramming
8.
Crit Rev Immunol ; 44(6): 37-47, 2024.
Article in English | MEDLINE | ID: mdl-38848292

ABSTRACT

BACKGROUND: Estrogen receptor (ER) signaling plays an important role in the development and functional differentiation of the breast and participates in the process of breast cancer. Activated ER can affect various aspects of the cell's behavior, including proliferation, via modulating the expression of many downstream target genes. Phosphorylation is one of the activation pathways of ER. However, the relationship between estrogen receptor phosphorylation sites and breast development and carcinogenesis is not clear. METHODS: Using Crisper-Cas9 gene editing technology, we constructed ER S309A mutant mice. Using carmine staining of the mammary gland of mice at different developmental stages, we examined the breast development of ER S309A mice. Using hematoxylin-eosin (HE) staining of vaginal smears of mice at the same time for 5 consecutive days, we measured the vaginal epithelial keratinocytes. RESULTS: We established ER S309A mutant mice and observed breast defects in ER S309A mice. In addition, we observed decreased reproductive ability, and estrous cycle disorder in ER S309A mice. The number of vaginal epithelial keratino-cytes in the estrous cycle of ER S309A mice was decreased. CONCLUSION: These results suggest that the phosphorylation site of ER at Serine 309 is important for ER function and breast development.


Subject(s)
Serine , Animals , Female , Mice , Phosphorylation , Serine/metabolism , Humans , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Breast/growth & development , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/growth & development , Mutation
9.
NanoImpact ; 35: 100520, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906250

ABSTRACT

Micro- and nanoplastics have emerged as critical pollutants in various ecosystems, posing potential environmental and human health risks. Washing of polyester textiles has been identified as one of the sources of nanoplastics. However, other stages of the textile life cycle may also release nanoparticles. This study aimed to examine nanoparticle release during UV degradation of polyester textiles under controlled and real-world conditions. Fleece polyester textiles were weathered under simulated sunlight for up to two months, either in air or submerged in water. We conducted bi-weekly SEM image analyses and quantified released nanoparticles using nanoparticle tracking analysis (NTA). At week 0, the fiber surface appeared smooth after prewashing. In the air group, nanoparticles appeared on the fiber surface after UV-exposure. In the group of textiles submerged in water, the surfaces developed more pits over time. The cumulative nanoparticle emission from the weathered textiles ranged from 1.4 × 1011 to 4.0 × 1011 particles per gram of fabric in the air group and from 1.6 × 1011 to 4.4 × 1011 particles per gram of fabric in the water group over two months. The predominant particle size fell into the 100 to 200 nm range. The estimated mass of the released nanoparticles was 0.06-0.26 g per gram of fabric, which is lower than the amount released during the washing of new textiles. Additionally, Scanning Transmission X-ray Microscopy (STXM) images indicated that the weathered nanoparticles underwent oxidation. Overall, the research offers valuable insights into nanoparticle formation and release from polyester textiles during UV degradation.

10.
Opt Express ; 32(10): 18379-18398, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858995

ABSTRACT

A general method for designing an integral projection system is proposed, including optical design and digital preprocessing based on the mapping within the projection system. The per-pixel mapping between the sub-images and the integral projection image is generated by incorporating an integral projection imaging model as well as the ray data of all sub-channels. By tracing rays for sparsely sampled field points of the central sub-channel and constructing the mapping between the central sub-channel and other sub-channels, the efficient acquisition of ray data for all sub-channels is achieved. The sub-image preprocessing pipeline is presented to effectively address issues such as overlapping misalignment, optical aberrations, inhomogeneous illumination, and their collective contribution. An integral projection optical system with a field of view (FOV) of 80°, an F-number of 2, and uniform image performance is given as a design example. The ray tracing simulation results and quantitative analysis demonstrate that the proposed system yields distortion-free, uniformly illuminated, and high-quality integral projection images.

11.
ChemSusChem ; : e202400604, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38763908

ABSTRACT

The strategic formulation of a compatible electrolyte plays a pivotal role in extending the longevity of lithium-metal batteries (LMBs). Here, we present findings on a partially fluorinated electrolyte distinguished by a subdued solvation affinity towards Li+ ions and a concentrated anion presence within the primary solvation layer. This distinctive solvation arrangement redirects the focal points of reactions from solvent molecules to anions, facilitating the predominant involvement of anions in the creation of a LiF-enriched solid-electrolyte interphase (SEI). Electrochemical assessments showcase effective Li+ transport kinetics, diminished overpotential polarization for Li nucleation (28 mV), and prolonged cycling durability in Li||Li cells employing the partially fluorinated electrolyte. When tested in Li||NCM811 cells, the designed electrolyte delivers a capacity retention of 89.30 % and exhibits a high average Coulombic efficiency of 99.80 % over 100 cycles with a charge-potential cut-off of 4.6 V vs. Li/Li+ under the current density of 0.4C. Furthermore, even at a current density of 1C, the cells maintain 81.90 % capacity retention and a high average Coulombic efficiency of 99.40 % after 180 cycles. This work underscores the significance of weak-solvation interaction in partially fluorinated electrolytes and highlights the crucial role of solvent structure in enabling the long-term stability and high-energy density of LMBs.

12.
Article in English | MEDLINE | ID: mdl-38798220

ABSTRACT

BACKGROUND: In recent years, the incidence of rectal prolapse has increased significantly due to the sedentary lifestyle and irregular eating habits of modern life. However, there is a lack of clinical studies on the treatment of rectal prolapse with traditional Chinese medicine (TCM) with a large sample size. Therefore, this study investigated the characteristics of rectal prolapse treatment formulas and then studied the network pharmacology of their core therapeutic drugs, which can help to provide a reference for the treatment and postoperative care of rectal prolapse patients. OBJECTIVE: This study aimed to explore the prescription characteristics and the mechanism of action of core drugs in the treatment of rectal prolapse in Chinese medicine through data mining and bioinformatics techniques. METHODS: We collected the diagnosis and treatment information of patients with rectal prolapse from January 2014 to September 2021 in the electronic case database of Nanjing Hospital of TCM, mined the patient information and prescription features using R, screened the active ingredients of the core pairs of drugs and disease drug intersection targets using TCMSP and GnenCard databases, and constructed a Protein-protein interaction (PPI) network using STRING and Cytoscape, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the intersecting targets were performed using Metascape and R. RESULTS: We found that prolapse is easy to occur in people over 50 years old, preferably in autumn and winter. Commonly used therapeutic Chinese medicines include Glycyrrhiza glabra, Radix angelicae sinensis, Radix astragali, Atractylodes macrocephala, and Pericarpium citri reticulatae, which are mostly deficiency tonic medicines, warm in nature, and belong to spleen meridian. The core therapeutic medicinal pair was "Bupleuri radix-Cimicifugae rhizoma". There were 190 common targets of Bupleuri radix and Cimicifugae rhizoma, and 71 intersection targets of the drug pair and prolapse. The main components of the core drugs for the treatment of prolapse may be quercetin, kaempferol, Stigmasterol, etc, and the core targets may be CASP3, AKT1, HIF1A, etc. The total number of GO entries for the intersection targets of "Bupleuri radix-Cimicifugae rhizoma" and diseases was 3495, among which the molecular functions accounted for the largest proportion, mainly Pathways in cancer, IL-18 signaling pathway, etc. KEGG enriched pathway analysis yielded 168 results, and the major pathways were pathways in cancer, lipid and atherosclerosis, IL-17 signaling pathway, etc. Conclusion: This study adopted real-world research methodology and used data mining and bioinformatics technology to mine the medication law of rectal prolapse and its core drug action mechanism from the clinical information of Chinese medicine.

13.
Talanta ; 277: 126327, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38805944

ABSTRACT

Single photon ionization time-of-flight mass spectrometry (SPI-TOF-MS) is a powerful analytical technique for real-time detection of trace VOCs. However, efficient ion transmission within the ionization chamber has always been a challenging issue in SPI-TOF-MS. In this study, a novel ion guide termed the Segmented Focus Quadrupole Ion Guide (SFQ-IG) was introduced for SPI-TOF-MS. The SFQ-IG device consists of 12 printed circuit boards (PCB), each containing four quarter-ring electrodes with inner diameters progressively decreasing from 26 to 4 mm. The simulation results demonstrated that SFQ-IG exhibited superior ion transmission efficiency than both ion funnel (IF) field and direct current-only (DC-only) field. By integrating into a SPI-TOF-MS, this ion guide was optimized in terms of the ionization source pressure, direct current gradient, and radio frequency amplitude. Further comparative experiments demonstrated that the SPI-TOF-MS with the SFQ-IG exhibited higher sensitivity than both the IF field (1.3-7.4 times) and DC-only field (3.5-8.8 times) for the test VOCs. The improvements in limit of detection (LOD) with the SFQ-IG ranged from 1.6 to 5.3 times compared to the DC-only field for the test VOCs. Fabricated using PCB technology, the SFQ-IG is characterized by its cost-effectiveness, compact size, and high transmission efficiency, facilitating its integration into other mass spectrometers.

15.
Chemosphere ; 358: 142220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710410

ABSTRACT

Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 µm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.


Subject(s)
Chlamydomonas reinhardtii , Microplastics , Photosynthesis , Polystyrenes , Proteomics , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/growth & development , Polystyrenes/toxicity , Polystyrenes/chemistry , Microplastics/toxicity , Photosynthesis/drug effects , Oxidative Stress/drug effects , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Plastics/toxicity , Particle Size , Photosystem II Protein Complex/metabolism
16.
Environ Sci Ecotechnol ; 20: 100410, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38572083

ABSTRACT

Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.

17.
Sci Rep ; 14(1): 8324, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594513

ABSTRACT

Bladder cancer (BLCA) is a common malignant tumor in urinary system all over the world. However, due to its high recurrence rate and complex causes, clinicians often have limited options for surgical and drug treatments. Recent researchs on the molecular mechanism of BLCA have reveals its biological progress and potential for early diagnosis. Serine hydroxymethyltransferase 1/2 (SHMT1/2) is a crucial enzyme in the one-carbon metabolism of tumor cells, and the expression levels of these isozymes have been found to be associated with the biological progression of various malignant tumors. However, the impact of SHMT1/2 on the biological progression of bladder cancer and its molecular regulation mechanism remain unclear. In this research utilizes BLCA clinical sample data, the TCGA database, and in vitro cell experiments to predict the expression levels of SHMT1/2 in BLCA. The findings indicate that SHMT1 remained unchanged, while SHMT2 expression is increased in BLCA, which was related to poor prognosis. Additionally, SHMT2 affects the growth, migration, and apoptosis of bladder cancer cells in vitro. It also influences the expression levels of E-cadherin and N-cadherin, ultimately impacting the malignant biological progression of bladder tumors. These results establish a correlation between SHMT2 and the malignant biological progression of BLCA, providing a theoretical basis for the early diagnosis and treatment of bladder cancer.


Subject(s)
Glycine Hydroxymethyltransferase , Urinary Bladder Neoplasms , Humans , Glycine Hydroxymethyltransferase/genetics , Urinary Bladder Neoplasms/metabolism , Serine/metabolism , Prognosis
18.
Nano Lett ; 24(17): 5255-5259, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647273

ABSTRACT

After the first report of a graphene-based passive mode-locking ultrafast fiber laser, two-dimensional materials as efficient saturable absorbers offer a new horizon in ultrafast fiber laser. However, the interactions on atomic scale between these two-dimensional materials and fiber and the fiber effect on the carrier dynamics have not been realized. To figure out the exact role of fiber and the carrier dynamics affected by the fiber substrate related to ultrafast photonics, bismuthene, a newly reported 2D quantum material used in a passive mode-locking fiber laser, deposited on α-quartz has been investigated. We surprisingly found that the α-quartz substrate can strongly accelerate the nonradiative electron-hole recombination of bismuthene in theory, and the transient absorption spectra of bismuthene on normal glass and α-quartz further verify the substrate effect on carrier dynamics of bismuthene. The discovery provides new thinking about substrate effect to regulate the performance of ultrafast mode-locking fiber lasers as well as ultrafast photonics.

19.
Talanta ; 274: 125999, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38583327

ABSTRACT

The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Entropy , Metal-Organic Frameworks , MicroRNAs , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Metal-Organic Frameworks/chemistry , DNA/chemistry , Limit of Detection , Electrodes , DNA Probes/chemistry , DNA Probes/genetics , Ferrous Compounds/chemistry , Metallocenes/chemistry
20.
J Environ Manage ; 358: 120834, 2024 May.
Article in English | MEDLINE | ID: mdl-38631170

ABSTRACT

The organic matter (OM) and nitrogen in Fresh leachate (FL) from waste compression sites pose environmental and health risks. Even though the constructed wetland (CW) can efficiently remove these pollutants, the molecular-level transformations of dissolved OM (DOM) in FL remain uncertain. This study reports the molecular dynamics of DOM and nitrogen removal during FL treatment in CWs. Two lab-scale vertical-flow CW systems were employed: one using only sand as substrates (act as a control, CW-C) and the other employing an equal mixture of manganese ore powder and sand (experimental, CW-M). Over 488 days of operation, CW-M exhibited significantly higher removal rates for chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and dissolved organic matter (represented by dissolved organic carbon, DOC) at 98.2 ± 2.5%, 99.2 ± 1.4%, and 97.9 ± 1.9%, respectively, in contrast to CW-C (92.8 ± 6.8%, 77.1 ± 28.1%, and 74.7 ± 9.5%). The three-dimensional fluorescence excitation-emission matrix (3D-EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses unveiled that the influent DOM was predominantly composed of readily biodegradable protein-like substances with high carbon content and low unsaturation. Throughout treatment, it led to the degradation of low O/C and high H/C compounds, resulting in the formation of DOM with higher unsaturation and aromaticity, resembling humic-like substances. CW-M showcased a distinct DOM composition, characterized by lower carbon content yet higher unsaturation and aromaticity than CW-C. The study also identified the presence of Gammaproteobacteria, reported as Mn-oxidizing bacteria with significantly higher abundance in the upper and middle layers of CW-M, facilitating manganese cycling and improving DOM removal. Key pathways contributing to DOM removal encompassed adsorption, catalytic oxidation by manganese oxides, and microbial degradation. This study offers novel insights into DOM transformation and removal from FL during CW treatment, which will facilitate better design and enhanced performance.


Subject(s)
Manganese , Water Pollutants, Chemical , Wetlands , Manganese/chemistry , Water Pollutants, Chemical/chemistry , Nitrogen/chemistry , Biological Oxygen Demand Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...