Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.591
Filter
1.
J Am Chem Soc ; 146(29): 19874-19885, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39007743

ABSTRACT

Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.


Subject(s)
Aptamers, Nucleotide , CRISPR-Cas Systems , Carcinoma, Non-Small-Cell Lung , Aptamers, Nucleotide/chemistry , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/blood , Proteome/analysis , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Biomarkers, Tumor/blood , Magnetite Nanoparticles/chemistry , Protein Corona/chemistry
3.
Int J Biol Macromol ; : 134145, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059542

ABSTRACT

Bacterial defense-associated sirtuin 2 (DSR2) proteins harbor an N-terminal sirtuin (SIR2) domain degrading NAD+. DSR2 from Bacillus subtilis 29R is autoinhibited and unable to hydrolyze NAD+ in the absence of phage infection. A tail tube protein (TTP) of phage SPR activates the DSR2 while a DSR2-inhibiting protein of phage SPbeta, known as DSAD1 (DSR anti-defense 1), inactivates the DSR2. Although DSR2 structures in complexed with TTP and DSAD1, respectively, have been reported recently, the autoinhibition and activation mechanisms remain incompletely understood. Here, we present cryo-electron microscopy structures of the DSR2-NAD+ complex in autoinhibited state and the in vitro assembled DSR2-TFD (TTP tube-forming domain) complex in activated state. The DSR2-NAD+ complex reveals that the autoinhibited DSR2 assembles into an inactive tetramer, binding NAD+ through a distinct pocket situated outside active site. Binding of TFD into cavities within the sensor domains of DSR2 triggers a conformational change in SIR2 regions, activating its NADase activity, whereas the TTP ß-sandwich domain (BSD) is flexible and does not contribute to the activation process. The activated form of DSR2 exists as tetramers and dimers, with the tetramers exhibiting more NADase activity. Overall, our results extend the current understanding of autoinhibition and activation of DSR2 immune proteins.

4.
Sci Total Environ ; 949: 175009, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053533

ABSTRACT

The heavy metals (HMs) spatial distribution in soil is intricately shaped by aggregation processes involving chemical reactions and biological activities, which modulate HMs toxicity, migration, and accumulation. Pioneer plants play a central role in preventing HMs at source, yet the precise mechanisms underlying their involvement in soil aggregation remain unclear. This study investigates HMs distribution within rhizosphere and bulk soil aggregates of Miscanthus sp. grown in tailings to elucidate the impact of root exudates (REs) and rhizosphere microbes. The results indicate that Miscanthus sp. enhance soil stability, increasing the proportion of macroaggregates by 4.06 %-9.78 %. HMs tend to concentrate in coarse-aggregates, particularly within rhizosphere environments, while diminishing in fine-aggregates. Under HMs stress, lipids and lipid-like molecules are the most abundant REs produced by Miscanthus sp., accounting for under up to 26.74 %. These REs form complex with HMs, promoting microaggregates formation. Charged components such as sugars and amino acids further contribute to soil aggregation. REs also regulates rhizosphere bacteria and fungi, with Acidobacteriota, Chloroflexi were the dominant bacterial phyla, while Ascomycota and Basidiomycota dominate the fungal community. The synergistic effect of REs and microorganisms impact soil organic matter and nutrient content, facilitating HMs nanoparticle heteroaggregation and macroaggregates formation. Consequently, soil structure and REs shape the distribution of HMs in soil aggregation. Pioneer plants mediate REs interaction with rhizosphere microbes, promoting the distribution of HMs into macroaggregates, leading to immobilization. This study sheds light on the role of pioneer plants in regulating soil HMs, offering valuable insights for soil remediation strategies.

5.
Nanomaterials (Basel) ; 14(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057882

ABSTRACT

With the gradual increase in energy demand in global industrialization, the energy crisis has become an urgent problem. Due to high heat storage density, small volume change, and nearly constant transition temperature, phase change materials (PCMs) provide a promising method to store thermal energy. In this work, we designed and fabricated three kinds of porous metal structures with hexagonal, rectangular, and circular pores and explored the phase change process of PCMs within them. A two-dimensional numerical model was established to investigate the heat transfer process of PCMs within different shapes of porous metal structures and analyze the influence of heat source location on the thermal performance of the thermal storage units. Visualization experiments were also carried out to reveal the melting process of PCMs within different porous metal structures by a digital camera. The results show that paraffin in a porous metal structure with hexagonal pores has the fastest melting rate, while that in a porous metal structure with circular pores has the slowest melting rate. Under the bottom heating mode, the melting time of the paraffin in porous metal structures with hexagonal pores is shortened by 18.6% compared to that in porous metal structures with circular pores. Under the left heating mode, the corresponding melting time is shortened by 16.7%. These findings in this work will offer an effective method to design and optimize the structure of porous metal and improve the thermal properties of PCMs.

6.
J Agric Food Chem ; 72(28): 15985-15997, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959496

ABSTRACT

Liver disease has become an important risk factor for global health. Resveratrol (Res) is a natural polyphenol which is widely found in foods and has a variety of biological activities. This study investigated the role of the microbiota-gut-liver axis in the Res relieving the liver fibrosis induced by inorganic mercury exposure. Twenty-eight mice were divided into four groups (n = 7) and treated with mercuric chloride and/or Res for 24 weeks, respectively. The results showed that Res mitigated the ileum injury induced by inorganic mercury and restrained LPS and alcohol entering the body circulation. Network pharmacological and molecular analyses showed that Res alleviated oxidative stress, metabolism disorders, inflammation, and hepatic stellate cell activation in the liver. In conclusion, Res alleviates liver fibrosis induced by inorganic mercury via activating the Sirt1/PGC-1α signaling pathway and regulating the microbial-gut-liver axis, particularly, increasing the relative enrichment of Bifidobacterium in the intestinal tract.


Subject(s)
Liver Cirrhosis , Liver , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Resveratrol , Signal Transduction , Sirtuin 1 , Animals , Mice , Resveratrol/pharmacology , Signal Transduction/drug effects , Sirtuin 1/metabolism , Sirtuin 1/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Liver/drug effects , Liver/metabolism , Mercury/toxicity , Mercury/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects
7.
Gen Comp Endocrinol ; 356: 114580, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38964421

ABSTRACT

Thyroid stimulating hormone (TSH), a glycoprotein synthesized and secreted from thyrotrophs of the pituitary gland, is composed of a glycoprotein hormone common alpha subunit (CGA) and a specific beta subunit (TSHB). The major biological function of TSH is to stimulate thyroidal follicles to synthesize and secrete thyroid hormones through activating its cognate receptor, the thyroid stimulating hormone receptor (TSHR). In the present study, polyclonal antisera against ricefield eel Tshb and Tshr were generated respectively, and the expression of Tshb and Tshr was examined at mRNA and protein levels. RT-PCR analysis showed that tshb mRNA was expressed mainly in the pituitary as well as in some extrapituitary tissues including the ovary and testis. Tshr mRNA was also expressed in a tissue-specific manner, with transcripts detected in tissues including the kidney, ovary, and testis. The immunoreactive Tshb signals in the pituitary were shown to be localized to the inner areas of adenohypophysis which are close to the neurohypophysis of adult ricefield eels. Tshb-immunoreatvie cells in the pituitary of ricefield eel larvae were firstly observed at hatching. The expression of immunoreactive Tshb and Cga was also detected in ricefield eel ovary and testis together with Tshr. In the ovary, immunoreactive Tshb, Cga, and Tshr were observed in oocytes and granulosa cells. In the testis, immunoreactive Tshb was mainly observed in Sertoli cells while immunoreactive Cga and Tshr were detected in germ cells as well as somatic cells. Results of the present study suggest that Tsh may be synthesized both in the ovary and testis locally, which may play paracrine and/or autocrine roles in gonadal development in ricefield eels.


Subject(s)
Eels , Receptors, Thyrotropin , Animals , Receptors, Thyrotropin/metabolism , Receptors, Thyrotropin/genetics , Female , Male , Eels/metabolism , Eels/genetics , Testis/metabolism , Gonads/metabolism , Paracrine Communication/physiology , Ovary/metabolism , Pituitary Gland/metabolism , Thyrotropin, beta Subunit/metabolism , Thyrotropin, beta Subunit/genetics , Autocrine Communication/physiology
8.
Neuroimage ; 297: 120722, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971483

ABSTRACT

Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/ß-hydrolase domain-containing 6 (ABHD6), ß 1,3-N-acetylglucosaminyltransferase-9(ß3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, ß3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.

9.
Breast Cancer Res ; 26(1): 112, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965610

ABSTRACT

BACKGROUND: Gene expression profiles in breast tissue biopsies contain information related to chemotherapy efficacy. The promoter profiles in cell-free DNA (cfDNA) carrying gene expression information of the original tissues may be used to predict the response to neoadjuvant chemotherapy in breast cancer as a non-invasive biomarker. In this study, the feasibility of the promoter profiles in plasma cfDNA was evaluated as a novel clinical model for noninvasively predicting the efficacy of neoadjuvant chemotherapy in breast cancer. METHOD: First of all, global chromatin (5 Mb windows), sub-compartments and promoter profiles in plasma cfDNA samples from 94 patients with breast cancer before neoadjuvant chemotherapy (pCR = 31 vs. non-pCR = 63) were analyzed, and then classifiers were developed for predicting the efficacy of neoadjuvant chemotherapy in breast cancer. Further, the promoter profile changes in sequential cfDNA samples from 30 patients (pCR = 8 vs. non-pCR = 22) during neoadjuvant chemotherapy were analyzed to explore the potential benefits of cfDNA promoter profile changes as a novel potential biomarker for predicting the treatment efficacy. RESULTS: The results showed significantly distinct promoter profile in plasma cfDNA of pCR patients compared with non-pCR patients before neoadjuvant chemotherapy. The classifier based on promoter profiles in a Random Forest model produced the largest area under the curve of 0.980 (95% CI: 0.978-0.983). After neoadjuvant chemotherapy, 332 genes with significantly differential promoter profile changes in sequential cfDNA samples of pCR patients was observed, compared with non-pCR patients, and their functions were closely related to treatment response. CONCLUSION: These results suggest that promoter profiles in plasma cfDNA may be a powerful, non-invasive tool for predicting the efficacy of neoadjuvant chemotherapy breast cancer patients before treatment, and the on-treatment cfDNA promoter profiles have potential benefits for predicting the treatment efficacy.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell-Free Nucleic Acids , Neoadjuvant Therapy , Promoter Regions, Genetic , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Middle Aged , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Adult , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Treatment Outcome , Gene Expression Profiling
10.
BMC Anesthesiol ; 24(1): 213, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951786

ABSTRACT

PURPOSE: Awake extubation and deep extubation are commonly used anesthesia techniques. In this study, the safety of propofol-assisted deep extubation in the dental treatment of children was assessed. MATERIALS AND METHODS: Children with severe caries who received dental treatment under general anesthesia and deep extubation between January 2017 and June 2023 were included in this study. Data were collected on the following variables: details and time of anesthesia, perioperative vital signs, and incidence of postoperative complications. The incidence of laryngeal spasm (LS) was considered to be the primary observation indicator. RESULTS: The perioperative data obtained from 195 children undergoing dental treatment was reviewed. The median age was 4.2 years (range: 2.3 to 9.6 years), and the average duration of anesthesia was 2.56 h (range 1 to 4.5 h). During intubation with a videoscope, purulent mucus was found in the pharyngeal cavity of seven children (3.6%); LS occurred in five of them (2.6%), and one child developed a fever (T = 37.8 °C) after discharge. Five children (2.6%) experienced emergence agitation (EA) in the recovery room. Also, 13 children (6.7%) experienced epistaxis; 10 had a mild experience and three had a moderate experience. No cases of airway obstruction (AO) and hypoxemia were recorded. The time to open eyes (TOE) was 16.3 ± 7.2 min. The incidence rate of complications was 23/195 (11.8%). Emergency tracheal reintubation was not required. Patients with mild upper respiratory tract infections showed a significantly higher incidence of complications (P < 0.001). CONCLUSIONS: Propofol-assisted deep extubation is a suitable technique that can be used for pediatric patients who exhibited non-cooperation in the outpatient setting. Epistaxis represents the most frequently encountered complication. Preoperative upper respiratory tract infection significantly increases the risk of complications. The occurrence of EA was notably lower than reported in other studies.


Subject(s)
Airway Extubation , Propofol , Humans , Airway Extubation/methods , Child, Preschool , Retrospective Studies , Propofol/administration & dosage , Propofol/adverse effects , Child , Male , Female , Anesthetics, Intravenous , Anesthesia, General/methods , Postoperative Complications/epidemiology , Laryngismus/epidemiology , Intubation, Intratracheal/methods , Anesthesia, Dental/methods
11.
Front Oncol ; 14: 1413953, 2024.
Article in English | MEDLINE | ID: mdl-39026982

ABSTRACT

Introduction: This study aims to investigate whether the transrectal ultrasound-guided combined biopsy (CB) improves the detection rates of prostate cancer (PCa) and clinically significant PCa (csPCa) in biopsy-naïve patients. We also aimed to compare the Prostate Imaging Reporting and Data System (PI-RADS v2.1) score, ADC values, and PSA density (PSAd) in predicting csPCa by the combined prostate biopsy. Methods: This retrospective and single-center study included 389 biopsy-naïve patients with PSA level 4~20 ng/ml, of whom 197 underwent prebiopsy mpMRI of the prostate. The mpMRI-based scores (PI-RADS v2.1 scores and ADC values) and clinical parameters were collected and evaluated by logistic regression analyses. Multivariable models based on the mpMRI-based scores and clinical parameters were developed by the logistic regression analyses to forecast biopsy outcomes of CB in biopsy-naïve patients. The ROC curves measured by the AUC values, calibration plots, and DCA were performed to assess multivariable models. Results: The CB can detect more csPCa compared with TRUSB (32.0% vs. 53%). The Spearman correlation revealed that Gleason scores of the prostate biopsy significantly correlated with PI-RADS scores and ADC values. The multivariate logistic regression confirmed that PI-RADS scores 4, 5, and prostate volume were important predictors of csPCa. The PI-RADS+ADC+PSAd (PAP) model had the highest AUCs of 0.913 for predicting csPCa in biopsy-naïve patients with PSA level 4~20 ng/ml. When the biopsy risk threshold of the PAP model was greater than or equal to 0.10, 51% of patients could avoid an unnecessary biopsy, and only 5% of patients with csPCa were missed. Conclusion: The prebiopsy mpMRI and the combined prostate biopsy have a high CDR of csPCa in biopsy-naïve patients. A multivariable model based on the mpMRI-based scores and PSAd could provide a reference for clinicians in forecasting biopsy outcomes in biopsy-naïve patients with PSA 4~20 ng/ml and make a more comprehensive assessment during the decision-making of the prostate biopsy.

12.
Sci Total Environ ; 946: 174482, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38969129

ABSTRACT

Polystyrene microplastics (PS-MP) and dibutyl phthalate (DBP) are plastic pollution derivatives (PPDs) commonly found in the natural environment. To investigate the effects of PPD exposure on the risk of allergic asthma, we established a PPD exposure group in a mouse model. The dose administered for PS-MP was 0.1 mg/d and for DBP was 30 mg/kg/d, with a 5-week oral administration period. The pathological changes of airway tissue and the increase of oxidative stress and inflammatory response confirmed that PPD aggravated eosinophilic allergic asthma in mice. The mitochondrial morphological changes and metabolomics of mice confirmed that ferrotosis and oxidative stress played key roles in this process. Treatment with 100 mg/Kg deferoxamine (DFO) provided significant relief, and metabolomic analysis of lung tissue supported the molecular toxicological. Our findings suggest that the increased levels of reactive oxygen species (ROS) in the lungs lead to Th2-mediated eosinophilic inflammation, characterized by elevated IL-4, IL-5, and eosinophils, and reduced INF-γ levels. This inflammatory response is mediated by the NFκB pathway and exacerbates type I hypersensitivity through increased IL-4 production. In this study, the molecular mechanism by which PPD aggravates asthma in mice was elucidated, which helps to improve the understanding of the health effects of PPD and lays a theoretical foundation for addressing the health risks posed by PPD.


Subject(s)
Asthma , Ferroptosis , Lung , Metabolomics , Animals , Asthma/chemically induced , Mice , Lung/drug effects , Lung/pathology , Ferroptosis/drug effects , Dibutyl Phthalate/toxicity , Th2 Cells/immunology , Oxidative Stress , Environmental Pollutants/toxicity , Microplastics/toxicity , Eosinophils/drug effects , Plastics/toxicity
13.
Org Lett ; 26(28): 6030-6034, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38976347

ABSTRACT

A photoredox-catalyzed sequential decarboxylative/defluorinative aminoalkylation of CF3-alkenes with N-arylglycines is described. This metal-free and redox-neutral protocol provided efficient access to the monofluoroalkenyl-1,5-diamines in good yields with excellent functional group compatibility. Mechanistic studies revealed that the reaction proceeds via a radical pathway with the gem-difluoroalkenyl amine as an intermediate.

14.
Water Sci Technol ; 90(1): 32-44, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007305

ABSTRACT

Developing a feasible and low-cost strategy for the recovery of calcium fluoride efficiently from fluoride-containing wastewater is very essential for the recycle of fluoride resources. Herein, a modified lime precipitation method was employed to recover CaF2 from fluorinated wastewater using a special icy lime solution. Intriguingly, the highest F- removal was greater than 95% under the optimal condition, leaving a fluoride concentration from 200 to 8.64 mg/L, while the lime dosage was much lower than that of industry. Importantly, spherical-shaped CaF2 particles with a 93.47% purity and size smaller than 600 nm were recovered, which has a high potential for the production of hydrofluoric acid. Besides, the precipitation was significantly affected by Ca/F molar ratio, stirring time, temperature, and solution pH. Furthermore, the thermodynamics and kinetics were investigated in detail to reveal the crystallization process. As a result, the defluorination reaction followed the pseudo-second order reaction kinetics model. Also, CO2 in the air adversely influenced the CaF2 purity. Based on this facile method, a high lime utilization efficiency was applied to defluorination, which contributed to protecting the environment and saving costs. This study, therefore, provides a feasible approach for the green recovery of fluorine resources and has significance for related research.


Subject(s)
Calcium Compounds , Calcium Fluoride , Fluorine , Oxides , Wastewater , Calcium Fluoride/chemistry , Wastewater/chemistry , Fluorine/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Fluorides/chemistry
15.
Sensors (Basel) ; 24(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39001137

ABSTRACT

Low-light imaging capabilities are in urgent demand in many fields, such as security surveillance, night-time autonomous driving, wilderness rescue, and environmental monitoring. The excellent performance of SPAD devices gives them significant potential for applications in low-light imaging. This article presents a 64 (rows) × 128 (columns) SPAD image sensor designed for low-light imaging. The chip utilizes a three-dimensional stacking architecture and microlens technology, combined with compact gated pixel circuits designed with thick-gate MOS transistors, which further enhance the SPAD's photosensitivity. The configurable digital control circuit allows for the adjustment of exposure time, enabling the sensor to adapt to different lighting conditions. The chip exhibits very low dark noise levels, with an average DCR of 41.5 cps at 2.4 V excess bias voltage. Additionally, it employs a denoising algorithm specifically developed for the SPAD image sensor, achieving two-dimensional grayscale imaging under 6 × 10-4 lux illumination conditions, demonstrating excellent low-light imaging capabilities. The chip designed in this paper fully leverages the performance advantages of SPAD image sensors and holds promise for applications in various fields requiring low-light imaging capabilities.

16.
Medicine (Baltimore) ; 103(28): e38912, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996123

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) infertility has attracted great attention from researchers due to its high incidence. Numerous studies have shown that Chinese medicine is effective in treating this disease, but there is a wide variety of Chinese medicine therapies available, and there is a lack of comparative evaluation of the efficacy of various Chinese medicine combination therapies in the clinic, which requires further in-depth exploration. This study aims to evaluate the efficacy of a combined traditional Chinese medicine (TCM) therapy for the treatment of infertility with PCOS using network meta-analysis (NMA). METHODS: In PubMed, web of Science, Cochrane Library, Embase, China Knowledge Network, Wanfang Data, VIP Database, China Biomedical Literature Database (SinoMed) databases, searchs were conducted for information about the randomized controlled trials (RCTs) of combined TCM therapy for the treatment of infertility with PCOS. Quality evaluation was performed using the Cochrane 5.3 risk of bias assessment tool, and NMA using Stata 16.0. RESULTS: This study comprised 28 RCTs using 8 combined TCM therapies in total. The results of the NMA showed that moxibustion + herbal, fire acupuncture + herbal, acupuncture + herbal, electroacupuncture + herbal, and acupoint application + herbal improved the clinical pregnancy rate better than acupuncture, herbal, and western medicines monotherapy (P < .05). Additionally, ear point pressure + herbal enema + herbal, acupuncture and moxibustion + herbal, fire acupuncture + herbal, and acupuncture + herbal improved the ovulation rate better than acupuncture, herbal, and western medicines monotherapy (P < .05). Moxibustion + herbal, fire acupuncture + herbal, and acupuncture + herbal are the 3 most effective therapies for improving the clinical pregnancy rate. Fire acupuncture + herbal, acupuncture + herbal, and ear point pressure + herbal enema + herbal are the 3 most effective therapies for improving the ovulation rate. CONCLUSION: The combined TCM therapy demonstrated better efficacy for the treatment of infertility with PCOS compared to acupuncture, herbal, and western medicines monotherapy. However, the optimal treatment therapy varied depending on the outcome indicators. Further large sample, high-quality, and standardized RCTs are needed to verify these findings.


Subject(s)
Infertility, Female , Medicine, Chinese Traditional , Polycystic Ovary Syndrome , Randomized Controlled Trials as Topic , Humans , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/drug therapy , Female , Infertility, Female/therapy , Infertility, Female/etiology , Infertility, Female/drug therapy , Medicine, Chinese Traditional/methods , Combined Modality Therapy , Network Meta-Analysis , Pregnancy , Acupuncture Therapy/methods , Drugs, Chinese Herbal/therapeutic use , Pregnancy Rate
17.
J Am Chem Soc ; 146(28): 19239-19248, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949598

ABSTRACT

Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.


Subject(s)
Biosensing Techniques , Machine Learning , Humans , Biosensing Techniques/methods , Biomarkers/analysis , Nanoparticles/chemistry , Semiconductors , High-Throughput Screening Assays , Pancreatic Neoplasms , Polymers/chemistry
18.
Nano Lett ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976602

ABSTRACT

Circular dichroism (CD) spectroscopy has been extensively utilized for detecting and distinguishing the chirality of diverse substances and structures. However, CD spectroscopy is inherently weak and conventionally associated with chiral sensing, thus constraining its range of applications. Here, we report a DNA-origami-empowered metasurface sensing platform through the collaborative effect of metasurfaces and DNA origami, enabling achiral/slightly chiral sensing with high sensitivity via the enhanced ΔCD. An anapole metasurface, boasting over 60 times the average optical chirality enhancement, was elaborately designed to synergize with reconfigurable DNA origami. We experimentally demonstrated the detection of achiral/slightly chiral DNA linker strands via the enhanced ΔCD of the proposed platform, whose sensitivity was a 10-fold enhancement compared with the platform without metasurfaces. Our work presents a high-sensitivity platform for achiral/slightly chiral sensing through chiral spectroscopy, expanding the capabilities of chiral spectroscopy and inspiring the integration of multifunctional artificial nanostructures across diverse domains.

19.
Mol Cell Biochem ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997506

ABSTRACT

Dietary salt is increasingly recognized as an independent risk factor for cognitive impairment. However, the exact mechanisms are not yet fully understood. Mitochondria, which play a crucial role in energy metabolism, are implicated in cognitive function through processes such as mitochondrial dynamics and mitophagy. While mitochondrial dysfunction is acknowledged as a significant determinant of cognitive function, the specific relationship between salt-induced cognitive impairment and mitochondrial health has yet to be fully elucidated. Here, we explored the underlying mechanism of cognitive impairment of mice and N2a cells treated with high-salt focusing on the mitochondrial homeostasis with western blotting, immunofluorescence, electron microscopy, RNA sequencing, and more. We further explored the potential role of SIRT3 in salt-induced mitochondrial dysfunction and synaptic alteration through plasmid transfection and siRNA. High salt diet significantly inhibited mitochondrial fission and blocked mitophagy, leading to dysfunctional mitochondria and impaired synaptic plasticity. Our findings demonstrated that SIRT3 not only promote mitochondrial fission by modulating phosphorylated DRP1, but also rescue mitophagy through promoting PINK1/Parkin-dependent pathway. Overall, our data for the first time indicate that mitochondrial homeostasis imbalance is a driver of impaired synaptic plasticity in a cognitive impairment phenotype that is exacerbated by a long-term high-salt diet, and highlight the protective role of SIRT3 in this process.

20.
Plant Physiol Biochem ; 214: 108932, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018777

ABSTRACT

Understanding the regulatory biosynthesis mechanisms of active compounds in herbs is vital for the preservation and sustainable use of natural medicine resources. Diterpenoids, which play a key role in plant growth and resistance, also serve as practical products for humans. Tanshinone, a class of abietane-type diterpenes unique to the Salvia genus, such as Salvia miltiorrhiza, is an excellent model for studying diterpenoids. In this study, we discovered that a transcription factor, SmERF106, responds to MeJA induction and is located in the nucleus. It exhibits a positive correlation with the expression of SmKSL1 and SmIDI1, which are associated with tanshinone biosynthesis. We performed DNA affinity purification sequencing (DAP-seq) to predict genes that may be transcriptionally regulated by SmERF106. Our cis-elements analysis suggested that SmERF106 might bind to GCC-boxes in the promoters of SmKSL1 and SmIDI1. This indicates that SmKSL1 and SmIDI1 could be potential target genes regulated by SmERF106 in the tanshinone biosynthesis pathway. Their interaction was then demonstrated through a series of in vitro and in vivo binding experiments, including Y1H, EMSA, and Dual-LUC. Overexpression of SmERF106 in the hairy root of S. miltiorrhiza led to a significant increase in tanshinone content and the transcriptional levels of SmKSL1 and SmIDI1. In summary, we found that SmERF106 can activate the transcription of SmKSL1 and SmIDI1 in response to MeJA induction, thereby promoting tanshinone biosynthesis. This discovery provides new insights into the regulatory mechanisms of tanshinones in response to JA and offers a potential gene tool for tanshinone metabolic engineering strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...