Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34832906

ABSTRACT

The aim of this study was to evaluate the remineralization and antibacterial effect of silver-containing mesoporous bioactive glass (MBG-Ag) sealing combined with Er:YAG laser irradiation on human demineralized dentin specimens in a Streptococcus mutans cultivated environment. A total of 48 human dentin specimens were randomly divided into four groups. The characteristics of MBG-Ag and the occlusion efficiency of the dentinal tubules were analyzed using X-ray diffraction patterns, Fourier-transform infrared spectroscopy, scanning electron microscope images and energy dispersive X-ray spectroscopy. Moreover, the antibacterial activity against Streptococcus mutans was evaluated by colony formation assay. The results showed that the dentin specimens with Er:YAG laser irradiation can form a melted occlusion with a size of 3-4 µm. MBG-Ag promoted the deposition of numerous crystal particles on the dentinal surface, reaching the deepest penetration depth of 70 µm. The results suggested that both MBG-Ag and laser have the ability to enhance the remineralization and precipitation of hydroxyapatite crystals. While the results showed that MBG-Ag sealing combined with the thermomechanical subablation mode of Er:YAG laser irradiation-induced dense crystalline deposition, reaching a penetration depth of more than 300 µm, silver nanoparticles without good absorption of the Er:YAG laser resulted in a heterogeneous radiated surface. Er:YAG laser irradiation with a low energy and pulse rate cannot completely inhibit the growth of S. mutans, but MBG-Ag sealing reached the bactericidal concentration. It was concluded that the simultaneous application of MBG-Ag sealing and Er:YAG laser treatment can prevent the drawbacks of their independent uses, resulting in a superior form of treatment for dentin hypersensitivity.

2.
Polymers (Basel) ; 13(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068784

ABSTRACT

Acinetobacter baumannii (A. baumannii) is a common and challenging pathogen of nosocomial infections, due to its ability to survive on inanimate objects, desiccation tolerance, and resistance to disinfectants. In this study, we investigated an antibacterial strategy to combat A. baumannii via the combination of antibiotics and silver protein. This strategy used a functional platform consisting of silver nanoparticles (AgNPs) resurrected from silver-based calcium thiophosphate (SSCP) through casein and arginine. Then, the silver protein was combined with tigecycline, the first drug in glycylcycline antibiotic, to synergistically inhibit the viability of A. baumannii. The synergistic antibacterial activity was confirmed by the 96-well checkerboard method to determine their minimum inhibitory concentrations (MIC) and calculated for the combination index (CI). The MIC of the combination of silver protein and tigecycline (0.31 mg/mL, 0.16 µg/mL) was significantly lower than that of the individual MIC, and the CI was 0.59, which indicates a synergistic effect. Consequently, we integrated the detailed synergistic antibacterial properties when silver protein was combined with tigecycline. The result could make for a promising approach for the treatment of A. baumannii.

3.
RSC Adv ; 10(27): 15846-15852, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35493675

ABSTRACT

In this study, hierarchically mesoporous silica (HMS) with properties such as high specific surface area, high photostability, and no cellular toxicity was synthesized. The synthesized silica can be considered as an excellent carrier candidate material. Through the use of nitrogen adsorption and desorption analysis, the shape of the hysteresis loop implied the presence of mesoporous structures in the HMS powder. In addition, the encapsulation efficiency was more than 90%. These results showed that avobenzone could be encapsulated into the HMS powder because of its high specific surface area and pore volume. Additionally, X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and UV-visible (Vis) spectrophotometry were used to prove that the hierarchically mesoporous silica was able to effectively encapsulate avobenzone. In addition, the new synthetic sunscreen kept its excellent UVA absorption properties after being encapsulated.

SELECTION OF CITATIONS
SEARCH DETAIL
...