Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 298: 113529, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34426226

ABSTRACT

The northern part of the Yangtze River Delta (YRD) region in China suffers from high concentrations of fine particular matter (PM2.5) during the past years yet received much less attention compared to the other parts of the YRD region. In this study, we integrated observational data, control policies and strategies, and air quality simulations to develop PM2.5 attainment demonstration by year 2030 for the city of Bengbu, which represents a typical non-compliant city in the northern YRD region. In 2018, the annual average PM2.5 concentration in Bengbu was 51.8 µg/m3, which was 48 % higher than the standard of 35 µg/m3 set by the National Ambient Air Quality Standards (NAAQS). Different future emission scenarios were developed for year 2025 as mid-term and year 2030 as long-term. Integrated meteorology and air quality modeling system together with monitoring data was applied to predict the air quality under the future emission scenarios. Results show that when a conservative emission reduction ratio of 40 % was assumed for surrounding regions, the annual average PM2.5 concentration in Bengbu could meet the target value by 2030, in which case emissions of SO2, NOx, PM2.5, VOCs, and NH3 need to be reduced by 70.6 %, 43.5 %, 47.2 %, 33.4 %, and 47.5 %, respectively. PM2.5 concentration in Bengbu is not only controlled by local emission reductions but also affected by emission reductions of surrounding regions as well as contribution from long-range transport. More attentions need to be paid to the control of VOCs emissions in the near future to avoid increase of ozone concentrations while reducing PM2.5. Our results provide scientific support for the local government to formulate future air pollution prevention and control strategies, sub-regional joint-control among surrounding cities, as well as trans-regional joint-control between the north China and the YRD region.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Monitoring , Particulate Matter/analysis
2.
Environ Pollut ; 290: 117988, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34428699

ABSTRACT

The outbreak of coronavirus (COVID-19) has forced China to lockdown many cities and restrict transportation, industrial, and social activities. This provides a great opportunity to look at the impacts of pandemic quarantine on air quality and premature death due to exposure to air pollution. In this study, we applied the difference-in-differences (DID) model to quantify the casual impacts of COVID-19 lockdown on air quality at 278 cities across China. A widely used exposure-response function was further utilized to estimate the short-term health impacts associated with changes in PM2.5 due to lockdown. Results show that lockdown has caused drastic reduction in air pollution level in terms of all criteria pollutants except ozone. On average, concentrations of PM2.5, PM10, NO2, SO2 and CO are estimated to drop by 14.3 µg/m3, 22.2 µg/m3, 17.7 µg/m3, 2.9 µg/m3, and 0.18 mg/m3 as the result of lockdown. Cities with more confirmed cases of COVID-19 are related to stronger responses in air quality, despite that similar lockdown measures were implemented by the local governments. The improvement of air quality caused by COVID-19 lockdown in northern cities is found to be smaller than that of southern cities. Avoided premature death associated with PM2.5 exposures over the 278 cities was estimated to be 50.8 thousand. Our results re-emphasize the effectiveness of emission controls on air quality and associated health impacts. The high cost of lockdown, still high level of air pollution during lockdown and smaller effects in northern cities implies that source-specific mitigation policies are needed for continuous and sustainable reduction of air pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-537061

ABSTRACT

The author had analysed CP and HCT of 26 patients with primary glaucoma and 17 normal controls. The results showed that CP of patients with primary open -angle glaucoma is higher than normal and statistically significant

SELECTION OF CITATIONS
SEARCH DETAIL
...