Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-510566

ABSTRACT

The emergence of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) variants and "anatomical escape" characteristics threaten the effectiveness of current coronavirus disease (COVID-19) vaccines. There is an urgent need to understand the immunological mechanism of broad-spectrum respiratory tract protection to guide broader vaccines development. In this study, we investigated immune responses induced by an NS1-deleted influenza virus vectored intranasal COVID-19 vaccine (dNS1-RBD) which provides broad-spectrum protection against SARS-CoV-2 variants. Intranasal delivery of dNS1-RBD induced innate immunity, trained immunity and tissue-resident memory T cells covering the upper and lower respiratory tract. It restrained the inflammatory response by suppressing early phase viral load post SARS-CoV-2 challenge and attenuating pro-inflammatory cytokine (IL-6, IL-1B, and IFN-{gamma}) levels, thereby reducing excess immune-induced tissue injury compared with the control group. By inducing local cellular immunity and trained immunity, intranasal delivery of NS1-deleted influenza virus vectored vaccine represents a broad-spectrum COVID-19 vaccine strategy to reduce disease burden.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-477789

ABSTRACT

The widespread SARS-CoV-2 in humans results in the continuous emergence of new variants. Recently emerged Omicron variant with multiple spike mutations sharply increases the risk of breakthrough infection or reinfection, highlighting the urgent need for new vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x), which showed high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine comprised of STFK and STFK1628x elicited high titers of broad-spectrum antibodies to neutralize all 14 circulating SARS-CoV-2 variants, including Omicron; and fully protected vaccinees from intranasal SARS-CoV-2 challenges of either the ancestral strain or immune-evasive Beta variant. Strikingly, the vaccination of hamsters with the bivalent vaccine completely blocked the within-cage virus transmission to unvaccinated sentinels, for either the ancestral SARS-CoV-2 or Beta variant. Thus, our study provides new insights and antigen candidates for developing next-generation COVID-19 vaccines.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-423552

ABSTRACT

A safe and effective SARS-CoV-2 vaccine is essential to avert the on-going COVID-19 pandemic. Here, we developed a subunit vaccine, which is comprised of CHO-expressed spike ectodomain protein (StriFK) and nitrogen bisphosphonates-modified zinc-aluminum hybrid adjuvant (FH002C). This vaccine candidate rapidly elicited the robust humoral response, Th1/Th2 balanced helper CD4 T cell and CD8 T cell immune response in animal models. In mice, hamsters, and non-human primates, 2-shot and 3-shot immunization of StriFK-FH002C generated 28- to 38-fold and 47- to 269-fold higher neutralizing antibody titers than the human COVID-19 convalescent plasmas, respectively. More importantly, the StriFK-FH002C immunization conferred sterilizing immunity to prevent SARS-CoV-2 infection and transmission, which also protected animals from virus-induced weight loss, COVID-19-like symptoms, and pneumonia in hamsters. Vaccine-induced neutralizing and cell-based receptor-blocking antibody titers correlated well with protective efficacy in hamsters, suggesting vaccine-elicited protection is immune-associated. The StriFK-FH002C provided a promising SARS-CoV-2 vaccine candidate for further clinical evaluation.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-215236

ABSTRACT

The ongoing COVID-19 pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and host ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, we generated a recombinant fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process. In ACE2-expressing cells, we found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-026948

ABSTRACT

The global pandemic of Coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable in vitro neutralization assay is very important for the development of neutralizing antibodies, vaccines and other inhibitors. In this study, G protein-deficient vesicular stomatitis virus (VSVdG) bearing full-length and truncated spike (S) protein of SARS-CoV-2 were evaluated. The virus packaging efficiency of VSV-SARS-CoV-2-Sdel18 (S with C-terminal 18 amino acid truncation) is much higher than VSV-SARS-CoV-2-S. A neutralization assay for antibody screening and serum neutralizing titer quantification was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and human angiotensin-converting enzyme 2 (ACE2) overexpressed BHK21 cell (BHK21-hACE2). The experimental results can be obtained by automatically counting EGFP positive cell number at 12 hours after infection, making the assay convenient and high-throughput. The serum neutralizing titer of COVID-19 convalescent patients measured by VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with live SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting receptor binding domain (RBD) of SARS-CoV-2-S were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.

6.
Chinese Journal of Immunology ; (12): 1341-1345, 2017.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-615061

ABSTRACT

Objective:To prepare and preliminarily identify the monoclonal antibodies(mAbs) specifically against 3D protein of Enterovirus 71(EV71),using bioinformatics to predict the epitopes of 3D,with HBc protein as a carrier.Methods: Artificial screening of 3D protein epitope sequences by bioinformatic method,inserted into the major immunodominant region(MIR) area of Hepatitis B virus core protein(HBc),to construct the recombinant protein.BALB/c mice were immunized with the recombinant virus like particles(VLPs),to prepare the mAbs against 3D protein of EV71.Affinity chromatography technology was used to purify the mAb.The indirect ELISA,ELISPOT,immunofluorescence and immunohistochemistry staining methods were used to identify the characteristic of the mAb.Results: We displayed 3D(aa34-43),3D(aa61-76) and 3D(aa151-164) epitopes by constructing fusion protein using HBc VLPs as a vector,after hybridization,one positive hybridoma cell line(3E1) was selected by ELISA.The isotype of 3E1 was IgG2a.The results of immunofluorescence and immunohistochemistry staining assay showed that the mAb 3E1 could specifically recognize EV71.Conclusion: The prepared mAb 3E1 can specifically recognizes the EV71,which laid the foundation for the detection of virus and further study on 3D protein,and verified the bioinformatics technology combined with HBc carrier displaying peptides could prepare mAb quickly and efficiently.

SELECTION OF CITATIONS
SEARCH DETAIL
...