Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37761225

ABSTRACT

In this study, the drying of olive pomace in a hot-air-assisted radio frequency system (HA-RF) was conducted, and its effects on crude olive pomace oil quality were investigated. In this respect, the effects of radiofrequency electrode distance (90, 105 and 120 mm), sample thickness (2.5, 5, 7.5 and 10 cm) and compaction density (~0.45, ~0.60 and ~0.82 g/cm3) on drying rate have been evaluated. The best drying, with a higher drying efficiency, was obtained with 1 kg of sample weight and a 10 cm product thickness, ~0.45 g/cm3 compaction density and 105 mm electrode distance. Moreover, the results showed that the compaction density significantly affects the drying rate. The drying time was prolonged by approximately four times by increasing the compaction density from ~0.45 to ~0.82 g/cm3. The drying rate of olive pomace in HA-RF drying was compared with drying performed using hot air (HA) and radiofrequency (RF). The results revealed that HA-RF application reduced the drying time by almost 1.7 times compared to hot air drying and by about 2.7 times compared to radiofrequency. The peroxide value, free fatty acid content, p-anisidine value, polyaromatic hydrocarbon content, L*, a*, b*, chlorophyll and total carotenoid content of the oil extracted from the olive pomace dried under the best drying conditions were 1.09%, 12.2 meq O2/kg oil, 3.01, <1 ppb, 38.6, 7.5, 62.56, 105.25 mg pheophytin a/kg oil, 2.85 mg/kg oil, respectively. The drying of olive pomace in a hot-air-assisted radio frequency system could be an alternative way to ensure the safe and rapid drying of olive pomace.

2.
Prep Biochem Biotechnol ; 53(4): 433-442, 2023.
Article in English | MEDLINE | ID: mdl-35839278

ABSTRACT

In this study, pectin was extracted from the pistachio hull using two methods: conventional extraction and ultrasound-assisted extraction. Water and citric acid solution were tested separately as extraction solvents in both conventional and ultrasound methods. The highest yield (32.3 ± 1.44%) was obtained using a citric acid solution in the conventional extraction method. The pectin extracted with this method had 38.94 g acid per 100 g dry pectin extract. The galacturonic acid and ash contents were 65.81 ± 1.51 and 1.57 ± 0.03%, respectively. The pistachio hull pectin was under the low methoxy pectin group with a 19.29 ± 0.41% degree of esterification. The emulsifying property of the pectin extracted was investigated in an oil-in-water emulsion system at six different pectin concentrations (2, 4, 5, 6, 8, and 10% w/w) and at a fixed oil ratio (20% w/w). Emulsion performance was investigated in terms of emulsion stability, microstructural characteristics, droplet size, and rheological properties. The most stable emulsion was obtained at a 6% pectin concentration. The emulsifying activity index, emulsion stability index, droplet size, consistency index, and flow behavior index were 172.85 ± 0.59 m2/g, 158.28 ± 3.41 min, 6.08 ± 0.04 µm, 0.72 ± 0.001 Pa·sn, and 0.752 ± 0.005 at this concentration, respectively.


Subject(s)
Pectins , Pistacia , Emulsions , Citric Acid , Water
3.
J Food Sci ; 87(9): 4068-4081, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35975880

ABSTRACT

In this study, drying of grated potato in a hot air-assisted radio frequency system (HA-RF) and the associated effects on the final potato flour quality were studied. The drying behavior of the grated potatoes at different electrode distances (70-90 mm) and sample thickness (2-4 cm) was investigated. The safe drying (without burning tendency) of the maximum amount of sample (1000 g) in a reasonable drying time was carried out at 80 mm of electrode gap and 4 cm of sample thickness. HA-RF drying kinetics were studied and compared with hot air (HA) and radio frequency (RF) (without hot air) drying methods. HA-RF drying increased drying rate and shortened drying time by about 58% and 70% compared to HA and RF drying, respectively. The properties of the final potato flour obtained after HA-RF drying were also compared with those produced by RF, HA, and freeze drying. The flour obtained by HA-RF was superior to RF and HA dried samples with better retention of cellular microstructure and color. The drying method significantly affected the functional properties, thermal characteristics, pasting properties, and other characteristics of potato flours. PRACTICAL APPLICATION: HA-RF as an alternative drying technology was used for the first time to produce potato flour. The functional, thermal, and structural properties of the HA-RF dried product were compared with those dried by HA, RF, and freeze drying. The results of this study ensured very useful information for the use of potato flour obtained by different drying methods in the development of products with specific functional and rheological properties.


Subject(s)
Solanum tuberosum , Desiccation/methods , Flour/analysis , Hot Temperature , Radio Waves , Solanum tuberosum/chemistry
4.
J Food Sci ; 87(2): 764-779, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35049044

ABSTRACT

Conventional hot air and solar energy processes have been used for apricot. These processes had adverse effects on the quality due to the longer process times, and this indicates the need for an innovative approach. Radio frequency (RF) processing has innovation potential for drying with its volumetric heating feature, but an optimal process should be designed for process efficiency in industrial-scale applications. Therefore, the objective of this study was to confirm the RF process for industrial-scale apricot drying. For this purpose, a mathematical model was developed to predict temperature and moisture content change of apricots during drying, and experimental validation study was carried out. For the RF drying process, pre-dried apricots (0.58-0.75 kg water/kg dry matter, db) by solar energy were used. The purpose was to start the RF process at a suitable moisture content level as this process was not feasible to apply directly due to the high initial moisture content of apricots (up to 4 kg water/kg dry matter, db). RF drying experiments were carried out in a 10 kW hot air-assisted (50-60°C) staggered through electrode system. Optimum electrode gap was 81 mm with 2500 V potential of the charged electrode. Final moisture content of the dried apricots was 0.25-0.33 kg water/kg dry matter (db). Following the model validation for temperature and moisture content change, industrial-scale apricot drying scenarios were demonstrated to confirm the RF process for feasibility and process design. PRACTICAL APPLICATION: A comprehensive mathematical model was developed for radio frequency (RF) drying of apricots. This model was experimentally validated with respect to the temperature and moisture content change. Various process design studies were carried out for an industrial-scale apricot drying process to confirm the process feasibility. With this background, the results of this study can be directly used in an industrial drying for an optimal process design and energy efficiency.


Subject(s)
Prunus armeniaca , Desiccation , Hot Temperature , Models, Theoretical , Radio Waves , Temperature
5.
J Food Sci ; 86(1): 120-128, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33336400

ABSTRACT

Pectin-wax-based emulsion systems could be used to form edible films and coatings with desired water permeability characteristics. Pectin is often used in food industry due to its gelling and viscosity increasing properties. Physical properties of pectin are highly dependent on its esterification degree. Waxes are commonly used as edible coatings to enhance the water barrier properties of food products. This study focuses on preparing emulsions with sunflower oil wax (SFW) and high methoxyl pectin (HMP) at different concentrations for any possible edible film or coating formulations. Sunflower oil (SFO) was added as the dispersed oil phase to these emulsions. Characterization of the emulsions was performed by using particle size, rheology, and time domain nuclear magnetic resonance (NMR) relaxometry measurements. Effects of HMP concentration and the presence of SFO in the emulsion formulations were explored. Mean particle size values were recorded between 1 and 3 µm. Rheology measurements showed that increasing HMP concentrations and presence of SFO in emulsions resulted in more pseudoplastic behavior. NMR transverse relaxation times (T2 ) were measured to detect the differences between the emulsions. Relaxation spectrum analysis was also conducted for a detailed understanding of the transverse relaxations. Addition of SFO and higher HMP concentrations decreased the T 2 values of the emulsion systems (P < 0.05). However, T2 decreasing effect of SFO was compensated at 10% (w/w) HMP concentration showing that SFO was well dispersed in this particular emulsion formulation. Changes in the rheological behavior and relaxation times provided insight on the formation and stability of the emulsions. PRACTICAL APPLICATION: Findings of this study can be utilized and integrated to produce edible films and coatings with different water permeability characteristics. This study showed that NMR relaxometry parameters were also effective in monitoring and determining the physical characteristics of the pectin-wax-based emulsion systems as other conventional techniques including rheology and particle size measurements. Our NMR relaxometry findings were in correlation with the flow behavior and particle size results of the investigated emulsion systems.


Subject(s)
Food Additives/chemistry , Pectins/chemistry , Sunflower Oil/chemistry , Emulsifying Agents , Emulsions/chemistry , Gels , Magnetic Resonance Spectroscopy , Particle Size , Permeability , Rheology , Viscosity , Water/chemistry , Waxes/chemistry
6.
Food Technol Biotechnol ; 55(1): 86-94, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28559737

ABSTRACT

Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size (d=0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.

7.
J Food Sci Technol ; 53(5): 2389-95, 2016 May.
Article in English | MEDLINE | ID: mdl-27407205

ABSTRACT

The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content.

SELECTION OF CITATIONS
SEARCH DETAIL
...