Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Cent Sci ; 9(5): 892-904, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37252343

ABSTRACT

Nature has evolved intricate machinery to target and degrade RNA, and some of these molecular mechanisms can be adapted for therapeutic use. Small interfering RNAs and RNase H-inducing oligonucleotides have yielded therapeutic agents against diseases that cannot be tackled using protein-centered approaches. Because these therapeutic agents are nucleic acid-based, they have several inherent drawbacks which include poor cellular uptake and stability. Here we report a new approach to target and degrade RNA using small molecules, proximity-induced nucleic acid degrader (PINAD). We have utilized this strategy to design two families of RNA degraders which target two different RNA structures within the genome of SARS-CoV-2: G-quadruplexes and the betacoronaviral pseudoknot. We demonstrate that these novel molecules degrade their targets using in vitro, in cellulo, and in vivo SARS-CoV-2 infection models. Our strategy allows any RNA binding small molecule to be converted into a degrader, empowering RNA binders that are not potent enough to exert a phenotypic effect on their own. PINAD raises the possibility of targeting and destroying any disease-related RNA species, which can greatly expand the space of druggable targets and diseases.

3.
Mol Cell ; 81(16): 3323-3338.e14, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34352207

ABSTRACT

The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target.


Subject(s)
Carcinogenesis/genetics , Methyltransferases/genetics , Neoplasms/genetics , tRNA Methyltransferases/genetics , Guanosine/analogs & derivatives , Guanosine/genetics , Humans , Methylation , Neoplasms/pathology , Oncogenes/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , RNA, Transfer/genetics
4.
Sci Adv ; 7(27)2021 06.
Article in English | MEDLINE | ID: mdl-34193418

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the rapid development of new therapies against coronavirus disease 2019 (COVID-19) infection. Here, we present the identification of 200 approved drugs, appropriate for repurposing against COVID-19. We constructed a SARS-CoV-2-induced protein network, based on disease signatures defined by COVID-19 multiomics datasets, and cross-examined these pathways against approved drugs. This analysis identified 200 drugs predicted to target SARS-CoV-2-induced pathways, 40 of which are already in COVID-19 clinical trials, testifying to the validity of the approach. Using artificial neural network analysis, we classified these 200 drugs into nine distinct pathways, within two overarching mechanisms of action (MoAs): viral replication (126) and immune response (74). Two drugs (proguanil and sulfasalazine) implicated in viral replication were shown to inhibit replication in cell assays. This unbiased and validated analysis opens new avenues for the rapid repurposing of approved drugs into clinical trials.


Subject(s)
Drug Repositioning , SARS-CoV-2/physiology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Humans , Neural Networks, Computer , Proguanil/pharmacology , Proguanil/therapeutic use , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sulfasalazine/pharmacology , Virus Replication/drug effects , COVID-19 Drug Treatment
5.
Nature ; 593(7860): 597-601, 2021 05.
Article in English | MEDLINE | ID: mdl-33902106

ABSTRACT

N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Methyltransferases/antagonists & inhibitors , Adenosine/analogs & derivatives , Animals , Apoptosis , Cell Differentiation , Cell Line, Tumor , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Xenograft Model Antitumor Assays
6.
Curr Opin Hematol ; 28(2): 80-85, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33337619

ABSTRACT

PURPOSE OF REVIEW: In recent years, the N6-methyladenosine (m6A) modification of RNA has been shown to play an important role in the development of acute myeloid leukemia (AML) and the maintenance of leukemic stem cells (LSCs). In this review we summarise the recent findings in the field of epitranscriptomics related to m6A and its relevance in AML. RECENT FINDINGS: Recent studies have focused on the role of m6A regulators in the development of AML and their potential as translational targets. The writer Methyltransferase Like 3 and its binding partner Methyltransferase Like 14, as well as the reader YTH domain-containing family protein 2, were shown to be vital for LSC survival, and their loss has detrimental effects on AML cells. Similar observations were made with the demethylases fat mass and obesity-associated protein and AlkB homologue 5 RNA demethylase. Of importance, loss of any of these genes has little to no effect on normal hemopoietic stem cells, suggesting therapeutic potential. SUMMARY: The field of epitranscriptomics is still in its infancy and the importance of m6A and other RNA-modifications in AML will only come into sharper focus. The development of therapeutics targeting RNA-modifying enzymes may open up new avenues for treatment of such malignancies.


Subject(s)
Adenosine/analogs & derivatives , Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , RNA/metabolism , Adenosine/metabolism , Animals , Biomarkers , Disease Management , Disease Susceptibility , Epigenomics/methods , Humans , Leukemia, Myeloid, Acute/pathology , Methylation , RNA/genetics
7.
Sci Rep ; 6: 31968, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27555369

ABSTRACT

Progressive macular hypomelanosis (PMH) is a common skin disorder that causes hypopigmentation in a variety of skin types. Although the underlying aetiology of this condition is unclear, there is circumstantial evidence that links the skin bacterium Propionibacterium acnes to the condition. We now describe the first detailed population genetic analysis of P. acnes isolates recovered from paired lesional and non-lesional skin of PMH patients. Our results demonstrate a strong statistical association between strains from the type III phylogenetic lineage and PMH lesions (P = 0.0019), but not those representing other phylogroups, including those associated with acne (type IA1). We also demonstrate, based on in silico 16S rDNA analysis, that PMH isolates previously recovered from patients in Europe are also consistent with the type III lineage. Using comparative genome analysis, we identified multiple genomic regions that are specific for, or absent from, type III strains compared to other phylogroups. In the former case, these include open reading frames with putative functions in metabolism, transport and transcriptional regulation, as well as predicted proteins of unknown function. Further study of these genomic elements, along with transcriptional and functional analyses, may help to explain why type III strains are associated with PMH.


Subject(s)
Gram-Positive Bacterial Infections/diagnosis , Hypopigmentation/diagnosis , Propionibacterium acnes/genetics , Adolescent , Adult , Base Sequence , Case-Control Studies , Comparative Genomic Hybridization , Female , Genome, Bacterial , Gram-Positive Bacterial Infections/microbiology , Humans , Hypopigmentation/microbiology , Male , Multilocus Sequence Typing , Multiplex Polymerase Chain Reaction , Open Reading Frames/genetics , Phylogeny , Propionibacterium acnes/classification , Propionibacterium acnes/isolation & purification , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Skin/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...