Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Anesthesiol ; 24(1): 171, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714926

ABSTRACT

BACKGROUND: Older critically ill patients experience rapid muscle loss during stay in an intensive care unit (ICU) due to physiological stress and increased catabolism. This may lead to increased ICU length of stay, delayed weaning from ventilation and persistent functional limitations. We hypothesized that with optimal nutrition and early physical therapy acting in synergism, we can reduce muscle mass loss and improve functional outcomes. METHODS: This was a prospective, single blinded randomized, controlled single-center pilot study to compare the lean muscle mass (measured at bilateral quadriceps femoris using ultrasound) of older ICU patients at 4 time points over 14 days between the control and intervention groups. The control group received standard weight-based empiric feeding and standard ICU physiotherapy. The intervention group received indirect calorimetry directed feeding adjusted daily and 60 min per day of cycle ergometry. 21 patients were recruited and randomized with 11 patients in the control arm and 10 patients in the intervention arm. Secondary outcome measures included ICU and hospital mortality, length of stay, functional assessments of mobility and assessment of strength. RESULTS: Median age was 64 in the control group and 66 in the intervention group. Median calories achieved was 24.5 kcal/kg per day in the control group and 23.3 kcal/kg per day in the intervention group. Cycle ergometry was applied to patients in the intervention group for a median of 60 min a day and a patient had a median of 8.5 sessions in 14 days. Muscle mass decreased by a median of 4.7cm2 in the right quadriceps femoris in the control group and 1.8cm2 in the intervention group (p = 0.19), while the left quadriceps femoris decreased by 1.9cm2 in the control group and 0.1cm2 in the intervention group (p = 0.51). CONCLUSION: In this pilot study, we found a trend towards decrease muscle loss in bilateral quadriceps femoris with our combined interventions. However, it did not reach statistical significance likely due to small number of patients recruited in the study. However, we conclude that the intervention is feasible and potentially beneficial and may warrant a larger scale study to achieve statistical significance. TRIAL REGISTRATION: This study was registered on Clinicaltrials.gov on 30th May 2018 with identifier NCT03540732.


Subject(s)
Calorimetry, Indirect , Intensive Care Units , Length of Stay , Humans , Pilot Projects , Male , Aged , Female , Calorimetry, Indirect/methods , Prospective Studies , Middle Aged , Single-Blind Method , Critical Illness/therapy , Bicycling/physiology , Energy Intake/physiology , Quadriceps Muscle , Hospital Mortality
2.
Mater Sci Eng C Mater Biol Appl ; 59: 438-444, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652394

ABSTRACT

In order to improve the gas sensing properties, hydroxyapatite (HAp)-based composites were prepared by mixing with different contents of conductive polymers: polypyrrole (PPy) and polyaniline (PAni). The compositions, microstructures and phase constitutions of polymer/HAp composites were characterized, and the sensing properties were studied using a chemical gas sensing (CGS-8) system. The results showed that, compared to pure HAp, the sensitivities of the composites to ammonia were improved significantly. 5%PPy/HAp and 20%PAni/HAp composites exhibited the best sensitivities to ammonia, and the sensitivities at 500ppm were 86.72% and 86.18%, respectively. Besides, the sensitivity of 5%PPy/HAp at 1000ppm was up to 90.7%. Compared to pure PPy and PAni, the response and the recovery time of 5%PPy/HAp and 20%PAni/HAp at 200ppm were shortened several times, and they were 24s/245s and 15s/54s, respectively. In addition, the composites showed a very high selectivity to ammonia. The mechanism for the enhancement of the sensitivity to ammonia was also discussed. The polymer/HAp composites are very promising in applications of ammonia sensors.


Subject(s)
Ammonia/analysis , Aniline Compounds/chemistry , Durapatite/chemistry , Polymers/chemistry , Pyrroles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...