Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 29(6): 1931-1939, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37832144

ABSTRACT

Precise control is an essential and elusive quality of emerging self-driving transmission electron microscopes (TEMs). It is widely understood these instruments must be capable of performing rapid, high-volume, and arbitrary movements for practical self-driving operation. However, stage movements are difficult to automate at scale, owing to mechanical instability, hysteresis, and thermal drift. Such difficulties pose major barriers to artificial intelligence-directed microscope designs that require repeatable, precise movements. To guide design of emerging instruments, it is necessary to understand the behavior of existing mechanisms to identify rate limiting steps for full autonomy. Here, we describe a general framework to evaluate stage motion in any TEM. We define metrics to evaluate stage degrees of freedom, propose solutions to improve performance, and comment on fundamental limits to automated experimentation using present hardware.

3.
Nano Lett ; 22(12): 4963-4969, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35687425

ABSTRACT

Thin film deposition from the vapor phase is a complex process involving adatom adsorption, movement, and incorporation into the growing film. Here, we present quantitative experimental data that reveals anion intermixing over long length scales during the deposition of epitaxial Fe2O3 and Cr2O3 films and heterostructures by oxygen-plasma-assisted molecular beam epitaxy. We track this diffusion by incorporating well-defined tracer layers containing 18O and/or 57Fe and measure their redistribution on the nanometer scale with atom probe tomography. Molecular dynamics simulations suggest potential intermixing events, which are then examined via nudged elastic band calculations. We reveal that adatoms on the film surface act to "pull up" subsurface O and Fe. Subsequent ring-like rotation mechanisms involving both adatom and subsurface anions then facilitate their mixing. In addition to film deposition, these intermixing mechanisms may be operant during other surface-mediated processes such as heterogeneous catalysis and corrosion.

SELECTION OF CITATIONS
SEARCH DETAIL
...