Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
SAGE Open Med Case Rep ; 11: 2050313X221149527, 2023.
Article in English | MEDLINE | ID: mdl-36686208

ABSTRACT

Finding a suitable treatment for dysphagia has been challenging and the efficacy of neuromuscular electrical stimulation has been recognized. Moreover, the beneficial effect of interferential current transcutaneous electrical sensory stimulation has recently been described. However, the efficacy of interferential current transcutaneous electrical sensory stimulation in children with disabilities is unknown. Therefore, the aim of this study was to confirm the efficacy of interferential current transcutaneous electrical sensory stimulation in children with disabilities. Four children with disabilities of various types underwent interferential current transcutaneous electrical sensory stimulation once a week. All patients showed improved symptoms after interferential current transcutaneous electrical sensory stimulation treatment. Videoendoscopic examination showed reduced accumulation of secretion in all patients and decreased residual bolus in two. We also felt an increased forcefulness when swallowing in two. In addition, the questionnaire results regarding dysphagia indicated improvements. No significant side effects were observed. The interferential current transcutaneous electrical sensory stimulation treatment may be effective and safe in children with disabilities. The effect of this treatment on swallowing ability needs to be further investigated by studying more cases.

2.
BMC Bioinformatics ; 8: 343, 2007 Sep 18.
Article in English | MEDLINE | ID: mdl-17875221

ABSTRACT

BACKGROUND: Modelling of time series data should not be an approximation of input data profiles, but rather be able to detect and evaluate dynamical changes in the time series data. Objective criteria that can be used to evaluate dynamical changes in data are therefore important to filter experimental noise and to enable extraction of unexpected, biologically important information. RESULTS: Here we demonstrate the effectiveness of a Markov model, named the Linear Dynamical System, to simulate the dynamics of a transcript or metabolite time series, and propose a probabilistic index that enables detection of time-sensitive changes. This method was applied to time series datasets from Bacillus subtilis and Arabidopsis thaliana grown under stress conditions; in the former, only gene expression was studied, whereas in the latter, both gene expression and metabolite accumulation. Our method not only identified well-known changes in gene expression and metabolite accumulation, but also detected novel changes that are likely to be responsible for each stress response condition. CONCLUSION: This general approach can be applied to any time-series data profile from which one wishes to identify elements responsible for state transitions, such as rapid environmental adaptation by an organism.


Subject(s)
Gene Expression Profiling/methods , Linear Models , Arabidopsis/genetics , Arabidopsis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Markov Chains , Time Factors
3.
J Biol Chem ; 280(27): 25590-5, 2005 Jul 08.
Article in English | MEDLINE | ID: mdl-15866872

ABSTRACT

Since the completion of genome sequences of model organisms, functional identification of unknown genes has become a principal challenge in biology. Post-genomics sciences such as transcriptomics, proteomics, and metabolomics are expected to discover gene functions. This report outlines the elucidation of gene-to-gene and metabolite-to-gene networks via integration of metabolomics with transcriptomics and presents a strategy for the identification of novel gene functions. Metabolomics and transcriptomics data of Arabidopsis grown under sulfur deficiency were combined and analyzed by batch-learning self-organizing mapping. A group of metabolites/genes regulated by the same mechanism clustered together. The metabolism of glucosinolates was shown to be coordinately regulated. Three uncharacterized putative sulfotransferase genes clustering together with known glucosinolate biosynthesis genes were candidates for involvement in biosynthesis. In vitro enzymatic assays of the recombinant gene products confirmed their functions as desulfoglucosinolate sulfotransferases. Several genes involved in sulfur assimilation clustered with O-acetylserine, which is considered a positive regulator of these genes. The genes involved in anthocyanin biosynthesis clustered with the gene encoding a transcriptional factor that up-regulates specifically anthocyanin biosynthesis genes. These results suggested that regulatory metabolites and transcriptional factor genes can be identified by this approach, based on the assumption that they cluster with the downstream genes they regulate. This strategy is applicable not only to plant but also to other organisms for functional elucidation of unknown genes.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Energy Metabolism/physiology , Gene Expression Regulation, Plant/physiology , Genomics/methods , Serine/analogs & derivatives , Glucosinolates/genetics , Serine/metabolism , Sulfotransferases/genetics , Sulfur/metabolism , Transcription Factors/metabolism , Transcription, Genetic/physiology
4.
Plant J ; 42(2): 218-35, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15807784

ABSTRACT

The integration of metabolomics and transcriptomics can provide precise information on gene-to-metabolite networks for identifying the function of unknown genes unless there has been a post-transcriptional modification. Here, we report a comprehensive analysis of the metabolome and transcriptome of Arabidopsis thaliana over-expressing the PAP1 gene encoding an MYB transcription factor, for the identification of novel gene functions involved in flavonoid biosynthesis. For metabolome analysis, we performed flavonoid-targeted analysis by high-performance liquid chromatography-mass spectrometry and non-targeted analysis by Fourier-transform ion-cyclotron mass spectrometry with an ultrahigh-resolution capacity. This combined analysis revealed the specific accumulation of cyanidin and quercetin derivatives, and identified eight novel anthocyanins from an array of putative 1800 metabolites in PAP1 over-expressing plants. The transcriptome analysis of 22,810 genes on a DNA microarray revealed the induction of 38 genes by ectopic PAP1 over-expression. In addition to well-known genes involved in anthocyanin production, several genes with unidentified functions or annotated with putative functions, encoding putative glycosyltransferase, acyltransferase, glutathione S-transferase, sugar transporters and transcription factors, were induced by PAP1. Two putative glycosyltransferase genes (At5g17050 and At4g14090) induced by PAP1 expression were confirmed to encode flavonoid 3-O-glucosyltransferase and anthocyanin 5-O-glucosyltransferase, respectively, from the enzymatic activity of their recombinant proteins in vitro and results of the analysis of anthocyanins in the respective T-DNA-inserted mutants. The functional genomics approach through the integration of metabolomics and transcriptomics presented here provides an innovative means of identifying novel gene functions involved in plant metabolism.


Subject(s)
Arabidopsis/metabolism , Flavonols/biosynthesis , Gene Expression/physiology , Genomics , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Chromosome Mapping , Chromosomes, Plant , Down-Regulation , Gene Expression Profiling , Pancreatitis-Associated Proteins , Phylogeny , Plant Leaves/physiology , Up-Regulation
5.
Proc Natl Acad Sci U S A ; 101(27): 10205-10, 2004 Jul 06.
Article in English | MEDLINE | ID: mdl-15199185

ABSTRACT

Plant metabolism is a complex set of processes that produce a wide diversity of foods, woods, and medicines. With the genome sequences of Arabidopsis and rice in hands, postgenomics studies integrating all "omics" sciences can depict precise pictures of a whole-cellular process. Here, we present, to our knowledge, the first report of investigation for gene-to-metabolite networks regulating sulfur and nitrogen nutrition and secondary metabolism in Arabidopsis, with integration of metabolomics and transcriptomics. Transcriptome and metabolome analyses were carried out, respectively, with DNA macroarray and several chemical analytical methods, including ultra high-resolution Fourier transform-ion cyclotron MS. Mathematical analyses, including principal component analysis and batch-learning self-organizing map analysis of transcriptome and metabolome data suggested the presence of general responses to sulfur and nitrogen deficiencies. In addition, specific responses to either sulfur or nitrogen deficiency were observed in several metabolic pathways: in particular, the genes and metabolites involved in glucosinolate metabolism were shown to be coordinately modulated. Understanding such gene-to-metabolite networks in primary and secondary metabolism through integration of transcriptomics and metabolomics can lead to identification of gene function and subsequent improvement of production of useful compounds in plants.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Transcription, Genetic , Computational Biology , Glucosinolates/metabolism , Nitrogen/metabolism , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...