Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop ; 52: 12-16, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38404703

ABSTRACT

Purpose: Functional magnetic resonance imaging (fMRI) visualizes hemodynamic responses associated with brain and spinal cord activation. Various types of pain have been objectively assessed using fMRI as considerable brain activations. This study aimed to develop a pain model in cynomolgus macaques undergoing knee surgery and confirm brain activation due to resting pain after knee surgery. Methods: An osteochondral graft surgery on the femoral condyle in the unilateral knee was performed on four cynomolgus macaques (Macaca fascicularis). Resting pain was evaluated as changes in brain fMRI findings with a 3.0-T MRI scanner preoperatively, postoperatively, and after postoperative administration of morphine. In the fMRI analysis, Z-values >1.96 were considered statistically significant. Results: Brain activation without stimulation after surgery in the cingulate cortex (3.09) and insular cortex (3.06) on the opposite side of the surgery was significantly greater than that before surgery (1.05 and 1.03, respectively) according to fMRI. After the administration of morphine, activation due to resting pain decreased in the cingulate cortex (1.38) and insular cortex (1.21). Conclusion: Osteochondral graft surgery on the femoral condyle can lead to postoperative resting pain. fMRI can reveal activation in pain-related brain areas and evaluate resting pain due to knee surgery.

2.
Mol Pain ; 17: 17448069211008697, 2021.
Article in English | MEDLINE | ID: mdl-33853400

ABSTRACT

In vivo neuroimaging could be utilized as a noninvasive tool for elaborating the CNS mechanism of chronic pain and for elaborating mechanisms of potential analgesic therapeutics. A model of unilateral peripheral neuropathy was developed in the cynomolgus macaque, a species that is phylogenetically close to humans. Nerve entrapment was induced by placing a 4 mm length of polyvinyl cuff around the left common sciatic nerve. Prior to nerve injury, stimulation of the foot with a range of non-noxious von Frey filaments (1, 4, 8, 15, and 26 g) did not evoke brain activation as observed with functional magnetic resonance imaging (fMRI). Two weeks after injury, stimulation of the ipsilateral foot with non-noxious filaments activated the contralateral insula/secondary somatosensory cortex (Ins/SII) and anterior cingulate cortex (ACC). By contrast, no activation was observed with stimulation of the contralateral foot. Robust bilateral activation of thalamus was observed three to five weeks after nerve injury. Treatment with the clinical analgesic pregabalin reduced evoked activation of Ins/SII, thalamus and ACC whereas treatment with the NK1 receptor antagonist aprepitant reduced activation of the ipsilateral (left) thalamus. Twelve to 13 weeks after nerve injury, treatment with pregabalin reduced evoked activation of all regions of interest (ROI). By contrast, brain activation persisted in most ROI, except the ACC, following aprepitant treatment. Activation of the contralateral Ins/SII and bilateral thalamus was observed six months after nerve injury and pregabalin treatment suppressed activation of these nuclei. The current findings demonstrated persistent changes in CNS neurons following nerve injury as suggested by activation with non-painful mechanical stimulation. Furthermore, it was possible to functionally distinguish between a clinically efficacious analgesic drug, pregabalin, from a drug that has not demonstrated significant clinical analgesic efficacy, aprepitant. In vivo neuroimaging in the current nonhuman model could enhance translatability.


Subject(s)
Gyrus Cinguli/diagnostic imaging , Neuralgia/diagnostic imaging , Peripheral Nerve Injuries/diagnostic imaging , Somatosensory Cortex/diagnostic imaging , Analgesics/pharmacology , Animals , Aprepitant/pharmacology , Macaca fascicularis , Magnetic Resonance Imaging , Male , Neurokinin-1 Receptor Antagonists/pharmacology , Physical Stimulation , Pregabalin/pharmacology , Somatosensory Cortex/drug effects
3.
J Am Assoc Lab Anim Sci ; 59(1): 94-103, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31753062

ABSTRACT

Maintaining effective analgesia during invasive procedures performed under general anesthesia is important for minimizing postoperative complications and ensuring satisfactory patient wellbeing and recovery. While patients under deep sedation may demonstrate an apparent lack of response to noxious stimulation, areas of the brain related to pain perception may still be activated. Thus, these patients may still experience pain during invasive procedures. The current study used anesthetized or sedated cynomolgus macaques and functional magnetic resonance imaging (fMRI) to assess the activation of the parts of the brain involved in pain perception during the application of peripheral noxious stimuli. Noxious pressure applied to the foot resulted in the bilateral activation of secondary somatosensory cortex (SII) and insular cortex (Ins), which are both involved in pain perception, in macaques under either propofol or pentobarbital sedation. No activation of SII/Ins was observed in macaques treated with either isoflurane or a combination of medetomidine, midazolam, and butorphanol. No movement or other reflexes were observed in response to noxious pressure during stimulation under anesthesia or sedation. The current findings show that despite the lack of visible behavioral symptoms of pain during anesthesia or sedation, brain activation suggests the presence of pain depending on the anesthetic agent used. These data suggest that fMRI could be used to noninvasively assess pain and to confirm the analgesic efficacy of currently used anesthetics. By assessing analgesic efficacy, researchers may refine their experiments, and design protocols that improve analgesia under anesthesia.


Subject(s)
Functional Neuroimaging/veterinary , Macaca fascicularis , Magnetic Resonance Imaging/veterinary , Pain Measurement/veterinary , Analgesia , Analgesics/pharmacology , Animals , Brain/drug effects , Female , Functional Neuroimaging/methods , Isoflurane/pharmacology , Magnetic Resonance Imaging/adverse effects , Male , Pain/drug therapy , Pain Measurement/adverse effects , Propofol/pharmacology , Somatosensory Cortex/drug effects , Somatosensory Cortex/physiology , Somatosensory Cortex/physiopathology
4.
Hum Reprod ; 34(3): 469-478, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30597044

ABSTRACT

STUDY QUESTION: Can pain be objectively assessed in macaques with naturally occurring endometriosis? SUMMARY ANSWER: Behavioral, pharmacological and in vivo brain imaging findings indicate that pain can be quantified in macaques with endometriosis. WHAT IS KNOWN ALREADY: Endometriosis is characterized by abdominopelvic hypersensitity. The mechanism by which endometriosis evokes pain is largely unknown, as currently available analgesics offer limited pain relief. Thus, there is a need for both greater understanding of the in vivo mechanism of endometriosis-associated pain and better methods of testing novel therapeutics. STUDY DESIGN, SIZE, DURATION: Pain-related behavior and brain activation were assessed in five cynomolgus macaques with endometriosis. Three healthy female macaques served as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: Abdominopelvic sensitivity to force was assessed with an algometer. Activation of brain areas using block design force stimulation and the effects of a single dose of the analgesic drug morphine and 2-month treatment with the progestin dienogest on brain activation were observed via functional magnetic resonance imaging. MAIN RESULTS AND THE ROLE OF CHANCE: Pain response thresholds in macaques with endometriosis were significantly less than that of healthy macaques (P = 0.0003). In addition, non-noxious force activated the insula and thalamus, which was reduced with morphine and 2-month dienogest treatment. LIMITATIONS, REASONS FOR CAUTION: The specific role of cysts, such as peritoneal cysts, in endometriosis pain was not explored. While non-noxious stimulation activated the insula and thalamus, macaques were sedated during fMRI scans. Current findings need further confirmation in a larger cohort. WIDER IMPLICATIONS OF THE FINDINGS: The current study demonstrated central sensitization and related pain behavior in macaques with naturally occurring endometriosis. Altered functioning of the central nervous system could be the focus of future mechanistic studies and for the development of novel therapeutics. STUDY FUNDING/COMPETING INTEREST(S): Supported by a grant from the Shizuoka Industrial Foundation. All authors are employees of Hamamatsu Pharma Research, Inc.


Subject(s)
Behavior, Animal , Brain/diagnostic imaging , Brain/metabolism , Endometriosis/diagnostic imaging , Endometriosis/metabolism , Pain/physiopathology , Acetaminophen/therapeutic use , Analgesics/therapeutic use , Animals , Central Nervous System , Endometriosis/psychology , Female , Macaca fascicularis , Magnetic Resonance Imaging , Meloxicam/therapeutic use , Morphine/therapeutic use , Nandrolone/analogs & derivatives , Nandrolone/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...