Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Oncol ; 32(3): 593-601, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18292936

ABSTRACT

The expression of growth hormone-releasing hormone (GHRH) and its receptors has been demonstrated in peripheral tissues as well as CNS. Recently, the functional splice variant SV1 of GHRH receptor was identified in various human cancers and cancer cell lines. Although antineoplastic activity of GHRH antagonists has been clearly demonstrated, the mechanism of action is incompletely understood. The objective of this study was the investigation of direct anti-proliferative effect of GHRH antagonist MZ-5-156 on HEC-1A human endometrial cancer cell line and the elucidation of underlying mechanisms. RT-PCR revealed the expression of mRNA for GHRH and SV1 of GHRH receptor in HEC-1A cells. MZ-5-156, at concentrations between 10(-7) and 10(-5) M, had a dose-dependent antiproliferative effect on HEC-1A cells, as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, (MTS) assay. Hoechst 33342 staining and flow cytometric analysis indicated that MZ-5-156, at 10(-6) M, induced apoptosis in HEC-1A cells after 48 h of treatment. Western blot analysis of apoptosis-related proteins demonstrated that treatment with MZ-5-156 (10(-6) M) for 48 h significantly increased the protein levels of Fas, phospho-p53 (Ser46), p53AIP1 (p53-regulated Apoptosis-Inducing Protein 1), and caspase-8, -9, and -3, and decreased the protein level of Bcl-2. These results demonstrate that MZ-5-156 can directly inhibit the proliferation of human endometrial cancer cells, which express mRNA for GHRH and SV1 of GHRH receptor, presumably through the induction of p53-dependent apoptosis coupled with the up-regulation of Fas, phospho-p53 (Ser46), p53AIP1, and caspase-8, -9, and -3, and the down-regulation of Bcl-2.


Subject(s)
Adenocarcinoma, Papillary/pathology , Cell Proliferation/drug effects , Endometrial Neoplasms/pathology , Growth Hormone-Releasing Hormone/antagonists & inhibitors , Sermorelin/analogs & derivatives , Adenocarcinoma, Papillary/genetics , Aged , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Caspases/genetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Evaluation, Preclinical , Endometrial Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic , Genes, bcl-2 , Genes, p53 , Growth Hormone-Releasing Hormone/genetics , Humans , RNA, Messenger/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Sermorelin/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
2.
Endocrinology ; 146(2): 808-15, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15528299

ABSTRACT

Recent studies have shown the involvement of Fas/Fas ligand (FasL) system and nitric oxide (NO) in ovarian follicle atresia. Here we asked whether Fas/Fas ligand system interacts with NO using rat granulosa cell culture. Soluble recombinant Fas ligand (rFasL), at 100 ng/ml, significantly decreased cell viability, as measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, in the presence of 200 U/ml interferon-gamma, whereas the concurrent addition of a caspase inhibitor, Z-VAD-FMK, at 20 microm, significantly inhibited rFasL-induced cytotoxicity. Hoechst 33342 staining and flow cytometric analysis confirmed the induction of apoptosis in granulosa cells by 100 ng/ml rFasL in the presence of interferon-gamma, which was blocked by the concomitant addition of an NO donor, S-nitroso-N-acetylpenicillamine. Western blot analysis demonstrated that rFasL significantly up-regulated caspase-3, -8, and -9 activities in granulosa cells, which were attenuated by concurrent treatment with S-nitroso-N-acetylpenicillamine. Real-time quantitative RT-PCR revealed a significant decrease in inducible NO synthase mRNA levels in rFasL-induced apoptotic granulosa cells. In conclusion, we demonstrated the involvement of Fas/FasL system in inducing apoptosis through activation of a caspase-mediated cascade in rat granulosa cells, which is coupled with a decrease in inducible NO synthase expression. We further showed that NO inhibited Fas/FasL system-induced apoptosis by suppressing activation of the caspases, pointing to a cross-talk between Fas/FasL system-induced apoptosis pathway and NO-mediated antiapoptotic pathway in ovarian follicle atresia.


Subject(s)
Apoptosis/physiology , Follicular Atresia/metabolism , Granulosa Cells/cytology , Membrane Glycoproteins/metabolism , Nitric Oxide/metabolism , Penicillamine/analogs & derivatives , fas Receptor/metabolism , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Survival/physiology , Cells, Cultured , Fas Ligand Protein , Female , Granulosa Cells/metabolism , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Penicillamine/pharmacology , Rats , Rats, Wistar , Receptor Cross-Talk/physiology
3.
J Clin Endocrinol Metab ; 87(8): 3721-7, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12161501

ABSTRACT

We investigated the direct effects of LH-releasing hormone (LH-RH) antagonist, Cetrorelix, on the growth of HTOA human epithelial ovarian cancer cell line. RT-PCR revealed the expression of mRNA for LH-RH and its receptor in HTOA cells. Cetrorelix, at concentrations between 10(-9) and 10(-5) M, exerted a dose-dependent antiproliferative action on HTOA cells, as measured by 5-bromo-2'-deoxyuridine incorporation into DNA. Flow cytometric analysis indicated that Cetrorelix, at 10(-5) M, arrested cell cycle in HTOA cells, at G1 phase, after 24 h of treatment. Western blot analysis of cell cycle-regulatory proteins demonstrated that treatment with Cetrorelix (10(-5) M) for 24 h did not change the steady-state levels of cyclin D1, cyclin E, and cyclin-dependent kinase (Cdk)4 but decreased the levels of cyclin A and Cdk2. The protein levels of p21 (a Cdk inhibitor) and p53 (a suppressor of tumor cell growth and a positive regulator for p21 expression) were increased by Cetrorelix, but the levels of p27 (a Cdk inhibitor) did not change significantly. Flow cytometric analysis and terminal deoxynucleotidyltransferase-mediated deoxyuridine 5-triphosphate nick end labeling staining demonstrated that Cetrorelix (10(-5) M) induced apoptosis in HTOA cells. In conclusion, Cetrorelix directly inhibits the proliferation of human epithelial ovarian cancer cells through mechanisms mediated by LH-RH receptor and involving multiple events in cell cycle progression, including G1 phase cell cycle arrest coupled with down-regulation of cyclin A-Cdk2 complex levels, presumably attributable to an up-regulation of p53 and p21 protein levels and apoptosis.


Subject(s)
Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Gonadotropin-Releasing Hormone/pharmacology , Hormone Antagonists/pharmacology , Ovarian Neoplasms , Apoptosis/drug effects , Cell Division/drug effects , DNA/biosynthesis , Epithelial Cells/cytology , Epithelial Cells/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Genes, cdc/drug effects , Humans , RNA, Messenger/analysis , Receptors, LHRH/genetics , Tumor Cells, Cultured/cytology , Tumor Cells, Cultured/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL