Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Biol ; 18(1): 163, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33158447

ABSTRACT

BACKGROUND: Numerous case studies have reported spontaneous regression of recognized metastases following primary tumor excision, but underlying mechanisms are elusive. Here, we present a model of regression and latency of metastases following primary tumor excision and identify potential underlying mechanisms. RESULTS: Using MDA-MB-231HM human breast cancer cells that express highly sensitive luciferase, we monitored early development stages of spontaneous metastases in BALB/c nu/nu mice. Removal of the primary tumor caused marked regression of micro-metastases, but not of larger metastases, and in vivo supplementation of tumor secretome diminished this regression, suggesting that primary tumor-secreted factors promote early metastatic growth. Correspondingly, MDA-MB-231HM-conditioned medium increased in vitro tumor proliferation and adhesion and reduced apoptosis. To identify specific mediating factors, cytokine array and proteomic analysis of MDA-MB-231HM secretome were conducted. The results identified significant enrichment of angiogenesis, growth factor binding and activity, focal adhesion, and metalloprotease and apoptosis regulation processes. Neutralization of MDA-MB-231HM-secreted key mediators of these processes, IL-8, PDGF-AA, Serpin E1 (PAI-1), and MIF, each antagonized secretome-induced proliferation. Moreover, their in vivo simultaneous blockade in the presence of the primary tumor arrested the development of micro-metastases. Interestingly, in the METABRIC cohort of breast cancer patients, elevated expression of Serpin E1, IL-8, or the four factors combined predicted poor survival. CONCLUSIONS: These results demonstrate regression and latency of micro-metastases following primary tumor excision and a crucial role for primary tumor secretome in promoting early metastatic growth in MDA-MB-231HM xenografts. If generalized, such findings can suggest novel approaches to control micro-metastases and minimal residual disease.


Subject(s)
Breast Neoplasms/surgery , Cell Proliferation , Neoplasm Regression, Spontaneous/physiopathology , Animals , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Proteomics
3.
Cancer Res ; 78(20): 6001-6010, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30154156

ABSTRACT

Breast cancer classification has been the focus of numerous worldwide efforts, analyzing the molecular basis of breast cancer subtypes and aiming to associate them with clinical outcome and to improve the current diagnostic routine. Genomic and transcriptomic profiles of breast cancer have been well established, however the proteomic contribution to these profiles has yet to be elucidated. In this work, we utilized mass spectrometry-based proteomic analysis on more than 130 clinical breast samples to demonstrate intertumor heterogeneity across three breast cancer subtypes and healthy tissue. Unsupervised analysis identified four proteomic clusters, among them, one that represents a novel luminal subtype characterized by increased PI3K signaling. This subtype was further validated using an independent protein-based dataset, but not in two independent transcriptome cohorts. These results demonstrate the importance of deep proteomic analysis, which may affect cancer treatment decision making.Significance: These findings utilize extensive proteomics to identify a novel luminal breast cancer subtype, highlighting the added value of clinical proteomics in breast cancer to identify unique features not observable by genomic approaches. Cancer Res; 78(20); 6001-10. ©2018 AACR.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/diagnosis , Proteomics , Breast/pathology , Breast Neoplasms/pathology , Cluster Analysis , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome , Humans , Mass Spectrometry , Phosphatidylinositol 3-Kinases/genetics , Proteome , Signal Transduction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...