Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 110(7): 1646-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23864377

ABSTRACT

Current observational inventories used to diagnose autism spectrum disorders (ASD) apply similar criteria to females and males alike, despite developmental differences between the sexes. Recent work investigating the chronology of diagnosis in ASD has raised the concern that females run the risk of receiving a delayed diagnosis, potentially missing a window of opportunity for early intervention. Here, we retake this issue in the context of the objective measurements of natural behaviors that involve decision-making processes. Within this context, we quantified movement variability in typically developing (TD) individuals and those diagnosed with ASD across different ages. We extracted the latencies of the decision movements and velocity-dependent parameters as the hand movements unfolded for two movement segments within the reach: movements intended toward the target and withdrawing movements that spontaneously, without instruction, occurred incidentally. The stochastic signatures of the movement decision latencies and the percent of time to maximum speed differed between males and females with ASD. This feature was also observed in the empirically estimated probability distributions of the maximum speed values, independent of limb size. Females with ASD showed different dispersion than males with ASD. The distinctions found for females with ASD were better appreciated compared with those of TD females. In light of these results, behavioral assessment of autistic traits in females should be performed relative to TD females to increase the chance of detection.


Subject(s)
Child Development Disorders, Pervasive/diagnosis , Phenotype , Psychomotor Performance , Adolescent , Adult , Case-Control Studies , Child , Child Development Disorders, Pervasive/physiopathology , Child, Preschool , Decision Making , Female , Humans , Male , Middle Aged , Movement , Neuropsychological Tests , Sex Factors
2.
Article in English | MEDLINE | ID: mdl-23898241

ABSTRACT

The current assessment of behaviors in the inventories to diagnose autism spectrum disorders (ASD) focus on observation and discrete categorizations. Behaviors require movements, yet measurements of physical movements are seldom included. Their inclusion however, could provide an objective characterization of behavior to help unveil interactions between the peripheral and the central nervous systems (CNSs). Such interactions are critical for the development and maintenance of spontaneous autonomy, self-regulation, and voluntary control. At present, current approaches cannot deal with the heterogeneous, dynamic and stochastic nature of development. Accordingly, they leave no avenues for real time or longitudinal assessments of change in a coping system continuously adapting and developing compensatory mechanisms. We offer a new unifying statistical framework to reveal re-afferent kinesthetic features of the individual with ASD. The new methodology is based on the non-stationary stochastic patterns of minute fluctuations (micro-movements) inherent to our natural actions. Such patterns of behavioral variability provide re-entrant sensory feedback contributing to the autonomous regulation and coordination of the motor output. From an early age, this feedback supports centrally driven volitional control and fluid, flexible transitions between intentional and spontaneous behaviors. We show that in ASD there is a disruption in the maturation of this form of proprioception. Despite this disturbance, each individual has unique adaptive compensatory capabilities that we can unveil and exploit to evoke faster and more accurate decisions. Measuring the kinesthetic re-afference in tandem with stimuli variations we can detect changes in their micro-movements indicative of a more predictive and reliable kinesthetic percept. Our methods address the heterogeneity of ASD with a personalized approach grounded in the inherent sensory-motor abilities that the individual has already developed.

3.
Article in English | MEDLINE | ID: mdl-23898243

ABSTRACT

Autism can be conceived as an adaptive biological response to an early unexpected developmental change. Under such conceptualization one could think of emerging biological compensatory mechanisms with unique manifestations in each individual. Within a large group of affected people this would result in a highly heterogeneous spectral disorder where it would be difficult to tap into the hidden potentials of any given individual. A pressing question is how to treat the disorder while harnessing the capabilities and predispositions that the individual has already developed. It would indeed be ideal to use such strengths to accelerate the learning of self-sufficiency and independence, important as the person transitions into adulthood. In this report, we introduce a new concept for therapeutic interventions and basic research in autism. We use visuo-spatial and auditory stimuli to help augment the physical reality of the child and sensory-substitute corrupted kinesthetic information quantified in his/her movement patterns to help the person develop volitional control over the hand motions. We develop a co-adaptive child-computer interface that closes the sensory-motor feedback loops by alerting the child of a cause-effect relationship between the statistics of his/her real-time hand movement patterns and those of external media states. By co-adapting the statistics of the media states and those of the child's real-time hand movements, we found that without any food/token reward the children naturally remained engaged in the task. Even in the absence of practice, the learning gains were retained, transferred and improved 2-4 weeks later. This new concept demonstrates that individuals with autism do have spontaneous sensory-motor adaptive capabilities. When led to their self-discovery, these patterns of spontaneous behavioral variability (SBV) morph into more predictive and reliable intentional actions. These can unlock and enhance exploratory behavior and autonomy in the individual with autism spectrum disorders (ASD).

4.
PLoS One ; 8(7): e66757, 2013.
Article in English | MEDLINE | ID: mdl-23843963

ABSTRACT

BACKGROUND: Often in Parkinson's disease (PD) motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. METHODS: To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT) required the same postural- and hand-paths as the orientation-priming version (primed-UP). Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN) however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. RESULTS AND CONCLUSIONS: We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary) control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial-orientation issues. Priming did not facilitate the motor task in PD but it did reveal a breakdown in the spatial-orientation decision that was independent of the motor-postural path.


Subject(s)
Hand/physiopathology , Parkinson Disease/physiopathology , Psychomotor Performance , Adult , Aged , Algorithms , Biomechanical Phenomena , Computer Simulation , Female , Humans , Male , Middle Aged , Models, Biological , Parkinson Disease/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...