Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Xenobiotica ; 54(1): 18-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38153086

ABSTRACT

The dose proportionality and bioavailability of the potential anti-inflammatory and neuroprotective JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime (IQ-1) were evaluated by comparing pharmacokinetic parameters after single oral (25, 50 and 100 mg/kg) and intravenous (1 mg/kg) IQ-1 administration in rats.IQ-1 and its major metabolite ketone 11H-indeno[1,2-b]quinoxalin-11-one (IQ-18) were isolated from plasma samples by liquid-liquid extraction. IQ-1 (E-isomer) and IQ-18 were simultaneously quantified in plasma by the validated method of liquid chromatography with triple quadrupole mass spectrometry (HPLC-MS/MS).The absolute bioavailability of IQ-1 was < 1.5%. Cmax values were 24.72 ± 4.30, 25.66 ± 7.11 and 37.61 ± 3.53 ng/mL after single oral administration of IQ-1 at doses of 25, 50 and 100 mg/kg, respectively. IQ-1 exhibited dose proportionality at 50-100 mg/kg dose levels, whereas its pharmacokinetics was not dose proportional over the range of 25-50 mg/kg. IQ-18 demonstrated the invariance of the dose-normalized Cmax.In this study we systematically elucidated the absorption characteristics of IQ-1 in rat gastrointestinal tract and provided better understanding of IQ-1 pharmacology for the future development of a new formulations and therapeutic optimisation.


Subject(s)
Quinoxalines , Tandem Mass Spectrometry , Rats , Animals , Biological Availability , Administration, Intravenous , Chromatography, High Pressure Liquid/methods , Administration, Oral
2.
J Pharm Biomed Anal ; 236: 115744, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37797493

ABSTRACT

Taxifolin (TFL) is a small drug molecule with a broad therapeutic potential limited by its poor aqueous solubility and excessive metabolism. Despite comprehensive research, some aspects of the TFL pharmacokinetics, e.g., dose proportionality and possible cumulative effect, remain unexplored. In the current study, we have tried to fill this gap. Our results revealed that the TFL pharmacokinetics in rats had nonlinear character in the dose range of 10-50 mg/kg after its single oral administration (AUC). For Cmax, the data are ambiguous: linearity was confirmed via the equivalence criterion and was disproved using the power model approach. Also, the cumulative drug effect was observed on the 4th day after its multiple-dose oral administration (25 mg/kg; compared to the 1st day). Interestingly, biologically active TFL metabolites such as aromadendrin and luteolin were putatively found in plasma samples, although they were previously detected only in feces. In addition, oil-in-water and water-in-oil microemulsions were fabricated to design novel drug delivery systems. These carrier dosage forms did not improve the TFL bioavailability but significantly affected its metabolism. To support pharmacokinetic studies, the bioanalytical liquid chromatography-tandem mass spectrometry method was developed and validated in the concentration range of 1-1000 ng/mL using candesartan as an internal standard. Liquid-liquid extraction with methyl tert-butyl ether was used to isolate the analytes from plasma followed by evaporation and reconstitution of the residues in acetonitrile. Thus, the present findings broaden our understanding of the TFL behavior in vivo and provide novel ideas and reference directions for its continued use in medical practice.


Subject(s)
Quercetin , Tandem Mass Spectrometry , Rats , Animals , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Water , Administration, Oral , Reproducibility of Results
4.
Article in English | MEDLINE | ID: mdl-36455390

ABSTRACT

IBP (2,6-diisobornyl-4-methylphenol) is a small drug molecule with antioxidant properties considered to be a promising neuro-, cardio-, and retinoprotective agent. In this study, a bioanalytical LC-MS/MS method for its determination in rat plasma was developed using 11H-indeno[1,2-b]quinoxalin-11-one oxime as an internal standard (IS). The analytes were extracted from plasma by liquid-liquid extraction technique using isopropyl alcohol:chloroform mixture (1:5, v/v) followed by evaporation and reconstitution of the residues in acetonitrile. The chromatographic separation was carried out on the EC Nucleodur C8 ec column (150 × 4.6 mm, 5 µm) under an isocratic elution mode using acetonitrile and water containing 0.1% (v/v) formic acid (97:3, v/v) as a mobile phase at a flow rate of 0.55 mL/min (40 °C). The IS and IBP were eluted at 3.79 ± 0.02 and 6.30 ± 0.02 min, respectively. The total analysis time was 7.00 min. Multiple reaction monitoring was used to conduct the MS/MS detection in the negative ion mode with transitions at m/z 245.9 â†’ 214.9 (IS) and 379.2 â†’ 256.0 (IBP). Validation studies of the developed method revealed good linearity over the range of 10-5,000 ng/mL. Within- and between-run accuracy was in the range of 92-110%, while within- and between-run precision was below 8%. Additionally, low matrix effects and high recovery (above 98%) were observed. IBP remained stable in rat plasma at room temperature for 4 h, at -80 °C for 21 days, over three freeze-thaw cycles, under vacuum concentrator (45 °C, dried residues) and auto-sampler (15 °C, processed samples) temperatures for 1 h and 24 h, respectively. Subsequently, the validated LC-MS/MS method has been successfully applied to quantitate IBP in actual plasma samples after a single oral, intramuscular, and subcutaneous dose of IBP (10 mg/kg in the peach oil) to rats. Pharmacokinetic studies show that more rapid and complete IBP absorption with a satisfactory excretion rate were observed after oral administration route compared to the intramuscular and subcutaneous ones.


Subject(s)
Antioxidants , Tandem Mass Spectrometry , Animals , Rats , Acetonitriles , Chromatography, Liquid , Phenols
5.
Biomed Chromatogr ; 36(3): e5296, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34875720

ABSTRACT

Indole-3-carbinol is the subject of ongoing biomedical research owing to its potential antiatherogenic, anticarcinogenic and antioxidant effects. The antitumor properties are mainly associated with its major metabolite, i.e. 3,3'-diindolylmethane (DIM). Typically, the biological activity of the chemical compound is manifested in the ng/ml concentration range. Consequently, the development of highly sensitive analytical methods to determine DIM in various biological samples is an urgent issue. In this study, an HPLC-MS/MS method was established for the quantification of DIM in human plasma. The developed method was validated according to the European Medicines Agency guidelines. Sensitivity, selectivity, accuracy and precision were good, allowing DIM quantification in the concentration range of 5-500 ng/ml. The limit of detection and the lower limit of quantification were 1 and 5 ng/ml, respectively. 4-Methoxy-1-methylindole was used as an internal standard (IS). The analytes were extracted from the human plasma by the acetonitrile-induced protein precipitation method with the addition of 3 mol/L ammonium sulfate as a salting-out agent, which is a facile and efficient approach for high-throughput bioanalysis. The chromatographic separation was performed on the Synergi Fusion-RP C18 column (50 × 2.0 mm, 4 µm, 80 Å) under isocratic elution at 40°C. The mobile phase consisting of acetonitrile and water (0.1% formic acid; 85:15, v/v) was delivered at a flow rate of 0.20 ml/min. DIM and the IS were eluted at 2.36 ± 0.04 and 2.43 ± 0.03 min, respectively. The total analysis time was 3.20 min. Atmospheric pressure chemical ionization was carried out using multiple reaction monitoring in the positive polarity mode. The ion transitions were set to m/z 247.1 → 130.1 (DIM) and 162.1 → 147.1 (IS). The method was successfully applied to the analysis of plasma samples after a single oral administration of the Indinol® Forto drug (200 mg) to healthy female Russian volunteers. Also, the developed method was used for the analysis of rabbit plasma samples after a single oral dose of DIM (20 mg/kg).


Subject(s)
Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Female , Indoles , Rabbits , Reproducibility of Results , Tandem Mass Spectrometry/methods
6.
Bioanalysis ; 14(22): 1423-1441, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36705017

ABSTRACT

Background: IQ-1 is a promising c-Jun-N-terminal kinase inhibitor and nitrovasodilator. An LC-MS/MS method was validated to determine IQ-1 isomers and major metabolite IQ-18 in rat plasma. Materials & methods: The analytes were extracted using ethyl acetate. The chromatographic separation was performed on a C8 column (150 × 4.6 mm, 5 µm) under acetonitrile-water (5 mM ammonium formate buffer, pH 2.93) gradient elution. Multiple reaction monitoring was used for MS/MS detection in the positive ion mode. Results: The method was fully validated over the range of 0.1-400 ng/ml (Z-isomer), 0.9-3600 ng/ml (E-isomer), 5.0-4000 (IQ-18). Conclusion: This method has been successfully applied to pharmacokinetic studies of IQ-1 and IQ-18 in rats after a single oral dose of IQ-1 (50 mg/kg).


Subject(s)
Plasma , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Linear Models
SELECTION OF CITATIONS
SEARCH DETAIL
...