Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35008640

ABSTRACT

Hyperlipidemia manifested by high blood levels of free fatty acids (FFA) and lipoprotein triglycerides is critical for the progression of type 2 diabetes (T2D) and its cardiovascular complications via vascular endothelial dysfunction. However, attempts to assess high FFA effects in endothelial culture often result in early cell apoptosis that poorly recapitulates a much slower pace of vascular deterioration in vivo and does not provide for the longer-term studies of endothelial lipotoxicity in vitro. Here, we report that palmitate (PA), a typical FFA, does not impair, by itself, endothelial barrier and insulin signaling in human umbilical vein endothelial cells (HUVEC), but increases NO release, reactive oxygen species (ROS) generation, and protein labeling by malondialdehyde (MDA) hallmarking oxidative stress and increased lipid peroxidation. This PA-induced stress eventually resulted in the loss of cell viability coincident with loss of insulin signaling. Supplementation with 5-aminoimidazole-4-carboxamide-riboside (AICAR) increased endothelial AMP-activated protein kinase (AMPK) activity, supported insulin signaling, and prevented the PA-induced increases in NO, ROS, and MDA, thus allowing to maintain HUVEC viability and barrier, and providing the means to study the long-term effects of high FFA levels in endothelial cultures. An upgraded cell-based model reproduces FFA-induced insulin resistance by demonstrating decreased NO production by vascular endothelium.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Endothelium, Vascular/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Oxidative Stress/drug effects , Palmitates/metabolism , Ribonucleotides/pharmacology , AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Endothelium, Vascular/metabolism , Fatty Acids, Nonesterified/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Insulin/metabolism , Insulin Resistance/physiology , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
2.
Oxid Med Cell Longev ; 2017: 1625130, 2017.
Article in English | MEDLINE | ID: mdl-29098058

ABSTRACT

BACKGROUND: Malondialdehyde (MDA), glyoxal (GO), and methylglyoxal (MGO) levels increase in atherosclerosis and diabetes patients. Recent reports demonstrate that GO and MGO cause vascular endothelial barrier dysfunction whereas no evidence is available for MDA. METHODS: To compare the effects of MDA, GO, or MGO on endothelial permeability, we used human EA.hy926 endothelial cells as a standard model. To study cortical cytoplasm motility and cytoskeletal organization in endothelial cells, we utilized time-lapse microscopy and fluorescent microscopy. To compare dicarbonyl-modified protein band profiles in these cells, we applied Western blotting with antibodies against MDA- or MGO-labelled proteins. RESULTS: MDA (150-250 µM) irreversibly suppressed the endothelial cell barrier, reduced lamellipodial activity, and prevented intercellular contact formation. The motile deficiency of MDA-challenged cells was accompanied by alterations in microtubule and microfilament organization. These detrimental effects were not observed after GO or MGO (250 µM) administration regardless of confirmed modification of cellular proteins by MGO. CONCLUSIONS: Our comparative study demonstrates that MDA is more damaging to the endothelial barrier than GO or MGO. Considering that MDA endogenous levels exceed those of GO or MGO and tend to increase further during lipoperoxidation, it appears important to reduce oxidative stress and, in particular, MDA levels in order to prevent sustained vascular hyperpermeability in atherosclerosis and diabetes patients.


Subject(s)
Atherosclerosis/complications , Diabetes Mellitus/blood , Endothelial Cells/metabolism , Diabetes Complications , Humans , Permeability
3.
Mol Cell Biochem ; 355(1-2): 187-91, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21647615

ABSTRACT

Cardiovascular diseases are accompanied by active oxygen species and organic free radical generation. The aim of this study was to examine the possibility of using oxidized low-density lipoprotein (oxLDL) as a new diagnostic biomarker. Epidemiological study in populations of Estonia (782 subjects) and Russia (1433 subjects) was carried out in 2007-2009. The screening procedure included standard epidemiological methods. Oxidative stress was assessed by measuring the level of oxLDL using immunoassay method. Positive correlation between the levels of oxLDL and LDL cholesterol was indicated in blood of patients from estonian (r = 0.61; P < 0.05) and russian (r = 0.56; P < 0.05) populations. In russian population oxLDL/HDL cholesterol ratio was higher in the groups with highest risk of atherosclerosis development or manifest coronary artery disease (CAD). Cholesterol-rich low density lipoproteins are also more oxidized. Estimation of oxLDL/HDL ratio may be used as an independent biochemical marker for atherosclerosis.


Subject(s)
Cholesterol, LDL/blood , Lipoproteins, LDL/blood , Adult , Aged , Atherosclerosis/blood , Biomarkers/blood , Cardiovascular Diseases/blood , Cholesterol, HDL/blood , Female , Humans , Male , Middle Aged , Oxidation-Reduction , Risk Factors , Young Adult
4.
Immunol Lett ; 134(2): 174-82, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-20933011

ABSTRACT

FCRL6 receptor is a more recently identified representative of the FCRL family. We generated a panel of mouse mAbs to baculovirus-derived recombinant FCRL6 protein. The clone 7B2 was found to specifically recognize a 63kDa protein expressed preferentially on the surface of CD8 T and CD56 NK cells in human peripheral blood and spleen. The clone 7B2 reacts with FCRL6 in Western blotting, FACS, and immunohistochemistry. In the T cell lineage, FCRL6 functions in antigen-experienced cells. Mitogenic stimulation of PB leukocytes in vitro resulted in an abrogation of the FCRL6 gene expression. We found a significant decrease in the FCRL6 gene expression in peripheral T cells of patients with certain autoimmune and blood diseases, and its upregulation at the late stages of HIV infection. Study of the FCRL6 association with signaling molecules showed its ability to recruit SHP-1, SHP-2, SHIP-1, and SHIP-2 phosphatases, and also adaptor protein Grb2 through phosphorylated cytoplasmic tyrosines. The current results demonstrate inhibitory potential of FCRL6 and suggest its possible involvement in modulation of CTL effector functions in various immune disorders.


Subject(s)
Carrier Proteins/immunology , Gene Expression Regulation , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Alternative Splicing , Amino Acid Sequence , Autoimmune Diseases/immunology , Blood Cells/cytology , CD8-Positive T-Lymphocytes/immunology , Hematologic Diseases/immunology , Humans , Intracellular Signaling Peptides and Proteins/immunology , Killer Cells, Natural/immunology , Molecular Sequence Data , RNA, Messenger/immunology , Sequence Alignment , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...