Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 899: 165653, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37474062

ABSTRACT

Soil minor and trace elements are vital regulators of ecological processes that sustain alpine ecosystem functions. In this study, the vertical pattern and driving factors of element concentrations in alpine soils of the Tibetan Plateau were investigated. Three snow mountains (Meili, Baima, and Haba) part of the Hengduan Mountain range, were selected as the study area to determine the vertical distribution of 12 typical elements (Cr, Ni, Cu, Fe, Mn, Zn, Cd, Pb, Ca, Sr, As, and Se) in topsoil with increasing and decreasing elevation, as well as the dominant driving factors of their spatial heterogeneity. Results showed that all elements, except Se, showed strong vertical heterogeneity, among which Cr, Ni, Cu, and Fe showed peak concentrations at 2700-3000 m; the highest concentrations of Mn and Zn were at 3200 m and 2700 m, with Cd and Pb at 2500 m. Ca and Sr levels gradually decreased with increasing elevation. According to the structural equation model and random forest analysis, the vertical heterogeneity of soil elements is directly regulated by the variability of climate and soil properties due to changes in elevation. A three-way PERMANOVA further quantized the contributions of climate and soil properties on vertical heterogeneity of all soil elements, which were 35.2 % and 50.5 %, respectively. This study used various statistical tools to reveal the dominant factors affecting the vertical heterogeneity of soil elements. These findings provided a scientific overview of element distribution on the Tibetan Plateau and significant references for the vertical distribution of elements in the topsoil of other snow mountains worldwide.

2.
Environ Res ; 215(Pt 2): 114348, 2022 12.
Article in English | MEDLINE | ID: mdl-36155154

ABSTRACT

Nitrate pollution is an important cause of eutrophication and ecological disruption. Recently, element sulfur-based denitrification (ESDeN) has attracted increasing attention because of its non-carbon source dependence, low sludge yield, and cost-effectiveness. Although the denitrification performance of sulfur autotrophic denitrifying bacteria at different temperatures has been widely studied, there are still many unknown factors about the adaptability and the shaping of microbial community. In this study, we comprehensively understood the shaping of ESDeN microbial communities under different temperature conditions. Results revealed that microbial communities cultivated at temperatures ranging from 10 °C to 35 °C could be classified as high-temperature (35 °C), middle-temperature (30, 25 and 20 °C), and low-temperature (15 and 10 °C) communities. Dissolved oxygen in water was an important factor that, in combination with temperature, shaped microbial community structure. According to network analysis, the composition of keystone taxa was different for the three groups of communities. Some bacteria that did not have sulfur compound oxidation function were identified as the "keystone species". The abundances of carbon, nitrogen, and sulfur metabolism of the three microbial communities were significantly changed, which was reflected in that the high-temperature and middle-temperature communities were dominated by dark oxidation of sulfur compounds and dark sulfide oxidation, while the low-temperature community was dominated by chemoheterotrophy and aerobic chemoheterotrophy. The fact that the number of microorganisms with dark oxidation of sulfur compounds capacity was quite higher than that of microorganisms with dark sulfur oxidation capacity suggested that the sulfur bioavailability at different temperatures, especially low temperature, was the main challenge for the development of efficient ESDeN process. This study provided a biological basis for developing a high-efficiency ESDeN process to cope with temperature changes in different seasons or regions.


Subject(s)
Denitrification , Microbiota , Bacteria , Bioreactors/microbiology , Nitrates/chemistry , Nitrogen/metabolism , Oxygen/metabolism , Sewage/microbiology , Sulfides , Sulfur/chemistry , Sulfur/metabolism , Sulfur Compounds/metabolism , Temperature , Water
3.
Sci Total Environ ; 806(Pt 3): 151342, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34728204

ABSTRACT

The co-contamination with cadmium (Cd) and arsenic (As) in the paddy soil is the most seriously combined pollution of toxic elements in China, and it is rather difficult to decrease bioavailable Cd and As levels in soil because of the opposite ionic forms of bioavailable Cd (cation) and As (anion). This study explored the optimal conditions of Eh and pH in different soils for simultaneous decrease of Cd and As bioavailabilities in the soil-rice system through soil culture and rice pot experiments under water management strategies. The results showed that near neutral soil pH (7.0) were eventually observed under long-term flooding conditions. Under unflooded conditions, soil pH is the dominant factor influencing bioavailabilities of Cd and As, while under flooded conditions, Eh becomes the most important factor. Pot experiments showed that flooding significantly reduced the Cd concentration in rice grains from 54.5% to 95.5%, but concomitantly increased rice As concentration substantially (214%-302%). By evaluating the trade-off value between the bioavailabilities of Cd and As in the soil, the minimal trade-off value was obtained when the soil Eh was -130 mV and the pH was 6.8.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Hydrogen-Ion Concentration , Soil , Soil Pollutants/analysis , Water , Water Pollution , Water Supply
4.
J Hazard Mater ; 412: 125131, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33516100

ABSTRACT

Arsenic (As) is a well-known human carcinogen, and rice consumption is the main way Chinese people are exposed to As. In this study, 14 kinds of paddy soils were collected from the main rice-producing areas in China. The results showed that rice roots and leaves accumulated more As than stems and grains in the following sequence: Asroot> Asleaf> Asstem> Asgrain. The accumulation of As by rice grains mainly depends on the total As and bioavailable As (0.43 mol/L HNO3 extractable As), which explained 32.2% and 22.2% of the variation in the grain As, respectively. In addition, soil pH, organic matter (OM) and clay contents were the major factors affecting grain As, explaining 13.1%, 7.9% and 5.3% of the variation, respectively. An effective prediction model was established via multiple linear regression as Asgrain= 0.024 BAs - 0.225 pH+ 0.013 OM+ 0.648 EC - 0.320 TN - 0.088 TP - 0.002 AS+ 2.157 (R2 =0.68, P < 0.01). Through the verification of the samples from both pot experiments and paddy fields, the model successfully provided accurate predictions for rice grain As.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , China , Humans , Soil , Soil Pollutants/analysis
5.
Food Sci Nutr ; 8(2): 982-992, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32185023

ABSTRACT

The relationship of toxic elements (As, Cd, Cr) and trace elements (Cu, Se, Ni, Zn, Mn) in rice bran and corresponding polished rice is not well known. A total of 446 rice grains were collected from paddy fields distributed across China, and the concentrations of 8 elements in rice bran and their corresponding polished rice were measured. The levels of As, Cd, Cr, and Se have a good linear relationship between rice bran and polished rice (R 2: .79, .97, .82, .99, respectively; all p < .001). Polishing rice could effectively remove the average contents of 44.4% As, 19.8% Cd, and 15.4% Cr in the whole grain, but caused the substantial losses of more than half of Mn and Ni (57.7% and 56.9%), and nearly one-third (30.9%, 31.5%, and 29.1%) of Cu, Se, and Zn in brown rice although only about 10% of rice bran was milled. The "L" type correlation exists not only between As and Cd, but also between the nutrients Se, Mn, Ni, and the toxic elements As, Cd. These results indicated that As accumulation in rice could reduce the levels of essential mineral nutrients Mn, Ni, and Se. On the contrary, improving nutrient elements by fertilization could decrease the accumulation of some toxic elements. This provides a practical new idea for the prevention and control of rice As or Cd, and concomitantly improves the deficiency of nutrient elements in rice.

6.
J Hazard Mater ; 383: 121160, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31518812

ABSTRACT

The application of current soil quality standards based on total arsenic (As) fails to assess the ecological risks of soil arsenic or to ensure the safety of crops and foods. In this study, bioavailable arsenic instead of total arsenic was applied to improve predictive models for arsenic transfer from soil to wheat (Triticum turgidum L.). The stepwise multiple-linear regression analysis showed that bioavailable arsenic and amorphous iron oxides (FeOX) were the two most important factors contributing to arsenic accumulation in wheat grain, with the explained percentage of variation being up to 82%. Compared with the bioavailable arsenic extracted by NH4H2PO4, bioavailable arsenic extracted by HNO3 from soils generated better predictions of the amount of arsenic in grain. The best reliable model was log[Asgrain] = 0.917 log[HNO3-As] - 0.452 log[FeOX] - 1.507 (R2 = 0.82, P <  0.001). Consistently, bioavailable arsenic and FeOX were also the key factors to predict arsenic accumulation in wheat straw, leaves and spikes. Our prediction models was successfully verified for three independent soils. Our results highlight the role of soil bioavailable heavy metals in predicting their transfer in soil-plant systems and can be used to improve existing Chinese soil quality standards.


Subject(s)
Arsenic/pharmacokinetics , Ferric Compounds/pharmacokinetics , Soil Pollutants/pharmacokinetics , Triticum/metabolism , Biological Availability
SELECTION OF CITATIONS
SEARCH DETAIL
...