Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(17)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38266306

ABSTRACT

Atomically thin transition metal dichalcogenides (TMDs) exhibit rich excitonic physics, due to reduced dielectric screening and strong Coulomb interactions. Especially, some attractive topics in modern condensed matter physics, such as correlated insulator, superconductivity, topological excitons bands, are recently reported in stacking two monolayer (ML) TMDs. Here, we clearly reveal the tuning mechanism of tensile strain on interlayer excitons (IEXs) and intralayer excitons (IAXs) in WSe2/MoSe2heterostructure (HS) at low temperature. We utilize the cryogenic tensile strain platform to stretch the HS, and measure by micro-photoluminescence (µ-PL). The PL peaks redshifts of IEXs and IAXs in WSe2/MoSe2HS under tensile strain are well observed. The first-principles calculations by using density functional theory reveals the PL peaks redshifts of IEXs and IAXs origin from bandgap shrinkage. The calculation results also show the Mo-4d states dominating conduction band minimum shifts of the ML MoSe2plays a dominant role in the redshifts of IEXs. This work provides new insights into understanding the tuning mechanism of tensile strain on IEXs and IAXs in two-dimensional (2D) HS, and paves a way to the development of flexible optoelectronic devices based on 2D materials.

2.
Phys Rev Lett ; 131(10): 106702, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739385

ABSTRACT

We experimentally realize a meterscale strong coupling effect between magnons and photons at room temperature, with a coherent coupling of ∼20 m and a dissipative coupling of ∼7.6 m. To this end, we integrate a saturable gain into a microwave cavity and then couple this active cavity to a magnon mode via a long coaxial cable. The gain compensates for the cavity dissipation, but preserves the cavity radiation that mediates the indirect photon-magnon coupling. It thus enables the long-range strong photon-magnon coupling. With full access to traveling waves, we demonstrate a remote control of photon-magnon coupling by modulating the phase and amplitude of traveling waves, rather than reconfiguring subsystems themselves. Our method for realizing long-range strong coupling in cavity magnonics provides a general idea for other physical systems. Our experimental achievements may promote the construction of information networks based on cavity magnonics.

3.
Phys Rev Lett ; 130(14): 146702, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084460

ABSTRACT

By developing a gain-embedded cavity magnonics platform, we create a gain-driven polariton (GDP) that is activated by an amplified electromagnetic field. Distinct effects of gain-driven light-matter interaction, such as polariton auto-oscillations, polariton phase singularity, self-selection of a polariton bright mode, and gain-induced magnon-photon synchronization, are theoretically studied and experimentally manifested. Utilizing the gain-sustained photon coherence of the GDP, we demonstrate polariton-based coherent microwave amplification (∼40 dB) and achieve high-quality coherent microwave emission (Q>10^{9}).

4.
Phys Rev Lett ; 130(4): 046705, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36763434

ABSTRACT

We observe a power-dependent anticrossing of Walker spin-wave modes under microwave pumping when a ferrimagnet is placed in a microwave waveguide that does not support any discrete photon mode. We interpret this unexpected anticrossing as the generation of a pump-induced magnon mode that couples strongly to the Walker modes of the ferrimagnet. This anticrossing inherits an excellent tunability from the pump, which allows us to control the anticrossing via the pump power, frequency, and waveform. Further, we realize a remarkable functionality of this anticrossing, namely, a microwave frequency comb, in terms of the nonlinear interaction that mixes the pump and probe frequencies. Such a frequency comb originates from the magnetic dynamics and thereby does not suffer from the charge noise. The unveiled hybrid magnonics driven away from its equilibrium enriches the utilization of anticrossing for coherent information processing.

5.
Nat Commun ; 12(1): 1933, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33772003

ABSTRACT

The perfect absorption of electromagnetic waves has promoted many applications, including photovoltaics, radar cloaking, and molecular detection. Unlike conventional methods of critical coupling that require asymmetric boundaries or coherent perfect absorption that require multiple coherent incident beams, here we demonstrate single-beam perfect absorption in an on-chip cavity magnonic device without breaking its boundary symmetry. By exploiting magnon-mediated interference between two internal channels, both reflection and transmission of our device can be suppressed to zero, resulting in magnon-induced nearly perfect absorption (MIPA). Such interference can be tuned by the strength and direction of an external magnetic field, thus showing versatile controllability. Furthermore, the same multi-channel interference responsible for MIPA also produces level attraction (LA)-like hybridization between a cavity magnon polariton mode and a cavity photon mode, demonstrating that LA-like hybridization can be surprisingly realized in a coherently coupled system.

6.
Nat Commun ; 8(1): 1437, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127391

ABSTRACT

The emerging field of cavity spintronics utilizes the cavity magnon polariton (CMP) induced by magnon Rabi oscillations. In contrast to a single-spin quantum system, such a cooperative spin dynamics in the linear regime is governed by the classical physics of harmonic oscillators. It makes the magnon Rabi frequency independent of the photon Fock state occupation, and thereby restricts the quantum application of CMP. Here we show that a feedback cavity architecture breaks the harmonic-oscillator restriction. By increasing the feedback photon number, we observe an increase in the Rabi frequency, accompanied with the evolution of CMP to a cavity magnon triplet and a cavity magnon quintuplet. We present a theory that explains these features. Our results reveal the physics of cooperative polariton dynamics in feedback-coupled cavities, and open up new avenues for exploiting the light-matter interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...