Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.001
Filter
1.
JAMA Intern Med ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829648

ABSTRACT

Importance: Previous studies have shown that Jinlida (JLD) granules, an approved treatment for type 2 diabetes in China, can reduce blood glucose level, reduce glycated hemoglobin (HbA1c), and improve insulin resistance in people with type 2 diabetes. Objective: To evaluate the effect of long-term administration of JLD vs placebo on the incidence of diabetes in participants with impaired glucose tolerance (IGT) and multiple metabolic abnormalities. Design, Setting, and Participants: This multicenter, double-blind, placebo-controlled randomized clinical trial (FOCUS) was conducted across 35 centers in 21 cities in China from June 2019 to February 2023. Individuals aged 18 to 70 years with IGT and multiple metabolic abnormalities were enrolled. Intervention: Participants were randomly allocated 1:1 to receive JLD or placebo (9 g, 3 times per day, orally). They continued this regimen until they developed diabetes, withdrew from the study, were lost to follow-up, or died. Main Outcomes and Measures: The primary outcome was the occurrence of diabetes, which was determined by 2 consecutive oral glucose tolerance tests. Secondary outcomes included waist circumference; fasting and 2-hour postprandial plasma glucose levels; HbA1c; fasting insulin level; homeostatic model assessment for insulin resistance (HOMA-IR); total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels; ankle-brachial index; and carotid intima-media thickness. Results: A total of 889 participants were randomized, of whom 885 were in the full analysis set (442 in the JLD group; 443 in the placebo group; mean [SD] age, 52.57 [10.33] years; 463 [52.32%] female). Following a median observation period of 2.20 years (IQR, 1.27-2.64 years), participants in the JLD group had a lower risk of developing diabetes compared with those in the placebo group (hazard ratio, 0.59; 95% CI, 0.46-0.74; P < .001). During the follow-up period, the JLD group had a between-group difference of 0.95 cm (95% CI, 0.36-1.55 cm) in waist circumference, 9.2 mg/dL (95% CI, 5.4-13.0 mg/dL) in 2-hour postprandial blood glucose level, 3.8 mg/dL (95% CI, 2.2-5.6 mg/dL) in fasting blood glucose level, 0.20% (95% CI, 0.13%-0.27%) in HbA1c, 6.6 mg/dL (95% CI, 1.9-11.2) in total cholesterol level, 4.3 mg/dL (95% CI, 0.8-7.7 mg/dL) in low-density lipoprotein cholesterol level, 25.7 mg/dL (95% CI, 15.9-35.4 mg/dL) in triglyceride levels, and 0.47 (95% CI, 0.12-0.83) in HOMA-IR compared with the placebo group. After 24 months of follow-up, the JLD group had a significant improvement in ankle-brachial index and waist circumference compared with the placebo group. Conclusions and Relevance: The findings suggest that JLD can reduce the risk of diabetes in participants with IGT and multiple metabolic abnormalities. Trial Registration: Chinese Clinical Trial Register: ChiCTR1900023241.

3.
EClinicalMedicine ; 72: 102626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38756107

ABSTRACT

Background: Previous trials of renal denervation (RDN) have been designed to investigate reduction of blood pressure (BP) as the primary efficacy endpoint using non-selective RDN without intraoperatively verified RDN success. It is an unmet clinical need to map renal nerves, selectively denervate renal sympathetic nerves, provide readouts for the interventionalists and avoid futile RDN. We aimed to examine the safety and efficacy of renal nerve mapping/selective renal denervation (msRDN) in patients with uncontrolled hypertension (HTN) and determine whether antihypertensive drug burden is reduced while office systolic BP (OSBP) is controlled to target level (<140 mmHg). Methods: We conducted a randomized, prospective, multicenter, single-blinded, sham-controlled trial. The study combined two efficacy endpoints at 6 months as primary outcomes: The control rate of patients with OSBP <140 mmHg (non-inferior outcome) and change in the composite index of antihypertensive drugs (Drug Index) in the treatment versus Sham group (superior outcome). This design avoids confounding from excess drug-taking in the Sham group. Antihypertensive drug burden was assessed by a composite index constructed as: Class N (number of classes of antihypertensive drugs) × (sum of doses). 15 hospitals in China participated in the study and 220 patients were enrolled in a 1:1 ratio (msRDN vs Sham). The key inclusion criteria included: age (18-65 years old), history of essential HTN (at least 6 months), heart rate (≥70 bpm), OSBP (≥150 mmHg and ≤180 mmHg), ambulatory BP monitoring (ABPM, 24-h SBP ≥130 mmHg or daytime SBP ≥135 mmHg or nighttime SBP ≥120 mmHg), renal artery stenosis (<50%) and renal function (eGFR >45 mL/min/1.73 m2). The catheter with both stimulation and ablation functions was inserted in the distal renal main artery. The RDN site (hot spot) was selected if SBP increased (≥5 mmHg) by intra-renal artery (RA) electrical stimulation; an adequate RDN was confirmed by repeated electronic stimulation if no increase in BP otherwise, a 2nd ablation was performed at the same site. At sites where there was decreased SBP (≥5 mmHg, cold spot) or no BP response (neutral spot) to stimulation, no ablation was performed. The mapping, ablation and confirmation procedure was repeated until the entire renal main artery had been tested then either treated or avoided. After msRDN, patients had to follow a predefined, vigorous drug titration regimen in order to achieve target OSBP (<140 mmHg). Drug adherence was monitored by liquid chromatography-tandem mass spectrometry analysis using urine. This study is registered with ClinicalTrials.gov (NCT02761811) and 5-year follow-up is ongoing. Findings: Between July 8, 2016 and February 23, 2022, 611 patients were consented, 220 patients were enrolled in the study who received standardized antihypertensive drug treatments (at least two drugs) for at least 28 days, presented OSBP ≥150 mmHg and ≤180 mmHg and met all inclusion and exclusion criteria. In left RA and right RA, mapped sites were 8.2 (3.0) and 8.0 (2.7), hot/ablated sites were 3.7 (1.4) and 4.0 (1.6), cold spots were 2.4 (2.6) and 2.0 (2.2), neutral spots were 2.0 (2.1) and 2.0 (2.1), respectively. Hot, cold and neutral spots was 48.0%, 27.5% and 24.4% of total mapped sites, respectively. At 6 M, the Control Rate of OSBP was comparable between msRDN and Sham group (95.4% vs 92.8%, p = 0.429), achieved non-inferiority margin -10% (2.69%; 95% CI -4.11%, 9.83%, p < 0.001 for non-inferiority); the change in Drug Index was significantly lower in msRDN group compared to Sham group (4.37 (6.65) vs 7.61 (10.31), p = 0.010) and superior to Sham group (-3.25; 95% CI -5.56, -0.94, p = 0.003), indicating msRDN patients need significantly fewer drugs to control OSBP <140 mmHg. 24-hour ambulatory SBP decreased from 146.8 (13.9) mmHg by 10.8 (14.1) mmHg, and from 149.8 (12.8) mmHg by 10.0 (14.0) mmHg in msRDN and Sham groups, respectively (p < 0.001 from Baseline; p > 0.05 between groups). Safety profiles were comparable between msRDN and Sham groups, demonstrating the safety and efficacy of renal mapping/selective RDN to treat uncontrolled HTN. Interpretation: The msRDN therapy achieved the goals of reducing the drug burden of HTN patients and controlling OSBP <140 mmHg, with only approximately four targeted ablations per renal main artery, much lower than in previous trials. Funding: SyMap Medical (Suzhou), LTD, Suzhou, China.

5.
BMC Genomics ; 25(1): 490, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760675

ABSTRACT

BACKGROUND: Ruptured atherosclerotic plaques often precipitate severe ischemic events, such as stroke and myocardial infarction. Unraveling the intricate molecular mechanisms governing vascular smooth muscle cell (VSMC) behavior in plaque stabilization remains a formidable challenge. METHODS: In this study, we leveraged single-cell and transcriptomic datasets from atherosclerotic plaques retrieved from the gene expression omnibus (GEO) database. Employing a combination of single-cell population differential analysis, weighted gene co-expression network analysis (WGCNA), and transcriptome differential analysis techniques, we identified specific genes steering the transformation of VSMCs in atherosclerotic plaques. Diagnostic models were developed and validated through gene intersection, utilizing the least absolute shrinkage and selection operator (LASSO) and random forest (RF) methods. Nomograms for plaque assessment were constructed. Tissue localization and expression validation were performed on specimens from animal models, utilizing immunofluorescence co-localization, western blot, and reverse-transcription quantitative-polymerase chain reaction (RT-qPCR). Various online databases were harnessed to predict transcription factors (TFs) and their interacting compounds, with determination of the cell-specific localization of TF expression using single-cell data. RESULTS: Following rigorous quality control procedures, we obtained a total of 40,953 cells, with 6,261 representing VSMCs. The VSMC population was subsequently clustered into 5 distinct subpopulations. Analyzing inter-subpopulation cellular communication, we focused on the SMC2 and SMC5 subpopulations. Single-cell subpopulation and WGCNA analyses revealed significant module enrichments, notably in collagen-containing extracellular matrix and cell-substrate junctions. Insulin-like growth factor binding protein 4 (IGFBP4), apolipoprotein E (APOE), and cathepsin C (CTSC) were identified as potential diagnostic markers for early and advanced plaques. Notably, gene expression pattern analysis suggested that IGFBP4 might serve as a protective gene, a hypothesis validated through tissue localization and expression analysis. Finally, we predicted TFs capable of binding to IGFBP4, with Krüppel-like family 15 (KLF15) emerging as a prominent candidate showing relative specificity within smooth muscle cells. Predictions about compounds associated with affecting KLF15 expression were also made. CONCLUSION: Our study established a plaque diagnostic and assessment model and analyzed the molecular interaction mechanisms of smooth muscle cells within plaques. Further analysis revealed that the transcription factor KLF15 may regulate the biological behaviors of smooth muscle cells through the KLF15/IGFBP4 axis, thereby influencing the stability of advanced plaques via modulation of the PI3K-AKT signaling pathway. This could potentially serve as a target for plaque stability assessment and therapy, thus driving advancements in the management and treatment of atherosclerotic plaques.


Subject(s)
Insulin-Like Growth Factor Binding Protein 4 , Kruppel-Like Transcription Factors , Myocytes, Smooth Muscle , Plaque, Atherosclerotic , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Myocytes, Smooth Muscle/metabolism , Animals , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Insulin-Like Growth Factor Binding Protein 4/metabolism , Insulin-Like Growth Factor Binding Protein 4/genetics , Humans , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Gene Expression Profiling , Single-Cell Analysis , Transcriptome , Gene Regulatory Networks , Male , Multiomics
6.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697116

ABSTRACT

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Subject(s)
CCCTC-Binding Factor , Cell Differentiation , Interferon-gamma , Interleukin-22 , Interleukins , Th1 Cells , Animals , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Th1 Cells/immunology , Mice , Cell Differentiation/immunology , Interferon-gamma/metabolism , Binding Sites , Interleukins/metabolism , Interleukins/genetics , Enhancer Elements, Genetic/genetics , Mice, Inbred C57BL , Chromatin/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Gene Expression Regulation , Toxoplasma/immunology , Cytokines/metabolism , Cell Lineage , Th17 Cells/immunology
7.
EBioMedicine ; 104: 105162, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38810561

ABSTRACT

BACKGROUND: Finding the oncogene, which was able to inhibit tumor cells intrinsically and improve the immune answers, will be the future direction for renal cancer combined treatment. Following patient sample analysis and signaling pathway examination, we propose p21-activated kinase 4 (PAK4) as a potential target drug for kidney cancer. PAK4 exhibits high expression levels in patient samples and plays a regulatory role in the immune microenvironment. METHODS: Utilizing AI software for peptide drug design, we have engineered a specialized peptide proteolysis targeting chimera (PROTAC) drug with selectivity for PAK4. To address challenges related to drug delivery, we developed a nano-selenium delivery system for efficient transport of the peptide PROTAC drug, termed PpD (PAK4 peptide degrader). FINDINGS: We successfully designed a peptide PROTAC drug targeting PAK4. PpD effectively degraded PAK4 with high selectivity, avoiding interference with other homologous proteins. PpD significantly attenuated renal carcinoma proliferation in vitro and in vivo. Notably, PpD demonstrated a significant inhibitory effect on tumor proliferation in a fully immunocompetent mouse model, concomitantly enhancing the immune cell response. Moreover, PpD demonstrated promising tumor growth inhibitory effects in mini-PDX and PDO models, further underscoring its potential for clinical application. INTERPRETATION: This PAK4-targeting peptide PROTAC drug not only curtails renal cancer cell proliferation but also improves the immune microenvironment and enhances immune response. Our study paves the way for innovative targeted therapies in the management of renal cancer. FUNDING: This work is supported by Research grants from non-profit organizations, as stated in the Acknowledgments.

8.
Biomed Pharmacother ; 175: 116694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713943

ABSTRACT

The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Kaempferols , Non-alcoholic Fatty Liver Disease , Obesity , Humans , Kaempferols/pharmacology , Kaempferols/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Obesity/drug therapy , Obesity/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Signal Transduction/drug effects
9.
Nat Commun ; 15(1): 4662, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821913

ABSTRACT

Deep Brain Stimulation can improve tremor, bradykinesia, rigidity, and axial symptoms in patients with Parkinson's disease. Potentially, improving each symptom may require stimulation of different white matter tracts. Here, we study a large cohort of patients (N = 237 from five centers) to identify tracts associated with improvements in each of the four symptom domains. Tremor improvements were associated with stimulation of tracts connected to primary motor cortex and cerebellum. In contrast, axial symptoms are associated with stimulation of tracts connected to the supplementary motor cortex and brainstem. Bradykinesia and rigidity improvements are associated with the stimulation of tracts connected to the supplementary motor and premotor cortices, respectively. We introduce an algorithm that uses these symptom-response tracts to suggest optimal stimulation parameters for DBS based on individual patient's symptom profiles. Application of the algorithm illustrates that our symptom-tract library may bear potential in personalizing stimulation treatment based on the symptoms that are most burdensome in an individual patient.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Tremor , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Male , Female , Middle Aged , Aged , Tremor/therapy , Tremor/physiopathology , Motor Cortex/physiopathology , Algorithms , Hypokinesia/therapy , Hypokinesia/physiopathology , White Matter/pathology , White Matter/physiopathology , Muscle Rigidity/therapy , Cerebellum/physiopathology , Cohort Studies , Treatment Outcome
10.
Phys Chem Chem Phys ; 26(15): 11798-11806, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38566592

ABSTRACT

The combination of transition-metal (TM) elements with two-dimensional (2D) transition-metal dichalcogenides (TMDs) provides an effective route to realizing a 2D controllable magnetic order, leading to significant applications in multifunctional nanospintronics. However, in most TM atoms@TMDs nanostructures, it is challenging for the magnetic anisotropy energy (MAE) to exceed 30 meV when affected by the crystal field. Hence, the stronger magnetic anisotropy of TMDs has yet to be developed. Here, utilizing first-principle calculations based on density functional theory (DFT), a feasible method to enhance the MAEs of TMDs via configurating iridium dimers (Ir2) on 2D traditional and Janus TMDs with antisite defects is reported. Calculations revealed that 28 of the 54 configurations considered possessed structure-dependent MAEs of >60 meV per Ir2 in the out-of-plane direction, suggesting the potential for applications at room temperature. We also showed the ability to tune the MAE further massively by applying a biaxial strain as well as the surface asymmetric polarization reversal of Janus-type substrates. This approach led to changes to >80 meV per Ir2. This work provides a novel strategy to achieve tunable large magnetic anisotropy in 2D TMDs. It also extends the functionality of antisite-defective TMDs, thereby providing theoretical support for the development of magnetic nanodevices.

11.
Exp Gerontol ; 191: 112434, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636571

ABSTRACT

BACKGROUND: Observational evidence suggests that type 1 diabetes mellitus (T1DM) is associated with the risk of osteoporosis (OP). Nevertheless, it is not apparent whether these correlations indicate a causal relationship. To elucidate the causal relationship, a two-sample Mendelian randomization (MR) analysis was performed. METHODS: T1DM data was obtained from the large genome-wide association study (GWAS), in which 6683 cases and 12,173 controls from 12 European cohorts were involved. Bone mineral density (BMD) samples at four sites were extracted from the GEnetic Factors for OSteoporosis (GEFOS) consortium, including forearm (FA) (n = 8,143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498), and heel (eBMD) (n = 426,824). The former three samples were from mixed populations and the last one was from European. Inverse variance weighting, MR-Egger, and weighted median tests were used to test the causal relationship between T1DM and OP. A series of sensitivity analyses were then conducted to verify the robustness of the results. RESULTS: Twenty-three independent SNPs were associated with FN-BMD and LS-BMD, twenty-seven were associated with FA-BMD, and thirty-one were associated with eBMD. Inverse variance-weighted estimates indicated a causal effect of T1DM on FN-BMD (odds ratio (OR) =1.033, 95 % confidence interval (CI): 1.012-1.054, p = 0.002) and LS-BMD (OR = 1.032, 95 % CI: 1.005-1.060, p = 0.022) on OP risk. Other MR methods, including weighted median and MR-Egger, calculated consistent trends. While no significant causation was found between T1DM and the other sites (FA-BMD: OR = 1.008, 95 % CI: 0.975-1.043, p = 0.632; eBMD: OR = 0.993, 95 % CI: 0.985-1.001, p = 0.106). No significant heterogeneity (except for eBMD) or horizontal pleiotropy was found for instrumental variables, suggesting these results were reliable and robust. CONCLUSIONS: This study shows a causal relationship between T1DM and the risk of some sites of OP (FN-BMD, LS-BMD), allowing for continued research to discover the clinical and experimental mechanisms of T1DM and OP. It also contributes to the recommendation if patients with T1DM need targeted care to promote bone health and timely prevention of osteoporosis.


Subject(s)
Bone Density , Diabetes Mellitus, Type 1 , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Osteoporosis/genetics , Bone Density/genetics , Risk Factors , Female , Male , Femur Neck/diagnostic imaging , Genetic Predisposition to Disease , Lumbar Vertebrae , Middle Aged , Case-Control Studies , Adult , Forearm
12.
Org Biomol Chem ; 22(14): 2764-2773, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38497199

ABSTRACT

Pattern recognition receptors (PRRs) play a critical role in the innate immune response, and toll-like receptor 7 (TLR7) is an important member of PRRs. Although several TLR7 agonists are available, most of them are being tested clinically, with only one available on the market. Thus, it is imperative to develop new TLR7 agonists. In this study, we designed and synthesized three kinds of quinazoline derivatives and five kinds of pyrrolo[3,2-d]pyrimidine derivatives targeting TLR7. The antiviral efficacy of these compounds was evaluated in vitro and in vivo. Our findings indicated that four kinds of compounds showed exceptional antiviral activity. Furthermore, molecular docking studies confirmed that compound 11 successfully positioned itself in the pocket of the TLR7 guanosine loading site with a binding energy of -4.45 kcal mol-1. These results suggested that these compounds might be potential antiviral agents.


Subject(s)
Quinazolines , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Quinazolines/chemistry , Molecular Docking Simulation , Adjuvants, Immunologic , Antiviral Agents/pharmacology , Pyrimidines/chemistry
13.
Cell Death Dis ; 15(2): 120, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331868

ABSTRACT

Targeting C5aR1 modulates the function of infiltrated immune cells including tumor-associated macrophages (TAMs). The gut microbiome plays a pivotal role in colorectal cancer (CRC) tumorigenesis and development through TAM education. However, whether and how the gut flora is involved in C5aR1 inhibition-mediated TAMs remains unclear. Therefore, in this study, genetic deletion of C5ar1 or pharmacological inhibition of C5aR1 with anti-C5aR1 Ab or PMX-53 in the presence or absence of deletion Abs were utilized to verify if and how C5aR1 inhibition regulated TAMs polarization via affecting gut microbiota composition. We found that the therapeutic effects of C5aR1 inhibition on CRC benefited from programming of TAMs toward M1 polarization via driving AKT2-mediated 6-phosphofructokinase muscle type (PFKM) stabilization in a TLR5-dependent manner. Of note, in the further study, we found that C5aR1 inhibition elevated the concentration of serum IL-22 and the mRNA levels of its downstream target genes encoded antimicrobial peptides (AMPs), leading to gut microbiota modulation and flagellin releasement, which contributed to M1 polarization. Our data revealed that high levels of C5aR1 in TAMs predicted poor prognosis. In summary, our study suggested that C5aR1 inhibition reduced CRC growth via resetting M1 by AKT2 activation-mediated PFKM stabilization in a TLR5-dependent manner, which relied on IL-22-regulated gut flora.


Subject(s)
Gastrointestinal Microbiome , Macrophages , Toll-Like Receptor 5/genetics , Phosphofructokinases , Phosphofructokinase-1 , Muscles , Tumor Microenvironment
14.
ACS Appl Mater Interfaces ; 16(9): 11957-11972, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38393750

ABSTRACT

The usage of a conductive hydrogel in wearable sensors has been thoroughly researched recently. Nonetheless, hydrogel-based sensors cannot simultaneously have excellent mechanical property, high sensitivity, comfortable wearability, and rapid self-healing performance, which result in poor durability and reusability. Herein, a robust conductive hydrogel derived from one-pot polymerization and subsequent solvent replacement is developed as a wearable sensor. Owing to the reversible hydrogen bonds cross-linked between polymer chains and clay nanosheets, the resulting conductive hydrogel-based sensor exhibits outstanding flexibility, self-repairing, and fatigue resistance performances. The embedding of graphene oxide nanosheets offers an enhanced hydrogel network and easy release of wearable sensor from the target position through remote irradiation, while Li+ ions incorporated by solvent replacement endow the wearable sensor with low detection limit (sensing strain: 1%), high conductivity (4.3 S m-1) and sensitivity (gauge factor: 3.04), good freezing resistance, and water retention. Therefore, the fabricated wearable sensor is suitable to monitor small and large human motions on the site and remotely under subzero (-54 °C) or room temperature, indicating lots of promising applications in human-motion monitoring, information encryption and identification, and electronic skins.


Subject(s)
Hydrogels , Humans , Clay , Electric Conductivity , Hydrogen Bonding , Motion , Solvents
15.
Bone Joint Res ; 13(2): 52-65, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38295830

ABSTRACT

Aims: To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism. Methods: In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed. Results: The CM and exosomes collected from senescent MLO-Y4 cells inhibited osteogenic differentiation of MC3T3-E1 cells. RNA sequencing detected significantly lower expression of miR-494-3p in senescent MLO-Y4 cell-derived exosomes compared with normal exosomes. The upregulation of exosomal miR-494-3p by miRNA mimics attenuated the effects of senescent MLO-Y4 cell-derived exosomes on osteogenic differentiation. Luciferase reporter assay demonstrated that miR-494-3p targeted phosphatase and tensin homolog (PTEN), which is a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overexpression of PTEN or inhibition of the PI3K/AKT pathway blocked the functions of exosomal miR-494-3p. In SAMP6 mice, senescent MLO-Y4 cell-derived exosomes accelerated bone loss, which was rescued by upregulation of exosomal miR-494-3p. Conclusion: Reduced expression of miR-494-3p in senescent osteocyte-derived exosomes inhibits osteogenic differentiation and accelerates age-related bone loss via PTEN/PI3K/AKT pathway.

16.
J Orthop Surg Res ; 19(1): 26, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167111

ABSTRACT

PURPOSE: In this study, we aimed to investigate the effects of postoperative malrotation alignment on the outcomes of Gartland type III/IV paediatric supracondylar humeral fracture (SCHF) treated by close reduction and percutaneous K-wire fixation. METHODS: Between January 2014 and December 2021, 295 Gartland type III/IV paediatric SCHFs treated by close reduction and percutaneous K-wire fixation were selected for this retrospective study. The demographic, clinical and radiographic parameters of all cases were collected. The lateral rotation percentage (LRP) was measured on X-rays to evaluate postoperative malrotation alignment of the fracture. All cases were categorized into 4 groups according to LRP: LRP ≤ 10% (210, 71.2%), 10% < LRP ≤ 20% (41, 13.9%), 20% < LRP ≤ 30% (26, 8.8%) and LRP > 30% (18, 6.1%). The carrying angle, ranges of multidirectional motions, Mayo Elbow Performance Score (MEPS) and Flynn's Standard Score (FSS) of the injured elbow were assessed 6 months postoperation and compared among different groups. ROC analysis based on LRP and the excellent/good rate of FSS was performed to determine the acceptable maximum degree of postoperative malrotation alignment. RESULTS: There was no difference in the demographic characteristics (age, sex, injured side and fracture type), postoperative Baumann angle, carrying angle or range of forearm rotation among the 4 groups (P > 0.05). The operation time and time from operation to K-wire removal were longer in the 20% < LRP ≤ 30% and LRP > 30% groups than in the LRP < 10% and 10% < LRP ≤ 20% groups (P < 0.001). The shaft condylar angle, range of elbow flexion, MEPS and FSS of the injured elbow 6 months postoperatively were lower in the 20% < LRP ≤ 30% and LRP > 30% groups than in the LRP < 10% and 10% < LRP ≤ 20% groups (P < 0.001). ROC analysis based on LRP and the excellent/good rate of FSS showed an area under the curve of 0.959 (95% CI 0.936-0.983), with a cutoff value of 26.5%, sensitivity of 95.3% and specificity of 90.1%. CONCLUSION: A certain degree of residual malrotation alignment deformity of the SCHF may reduce the shaft condylar angle and extend the time from operation to removing the K-wire and affect elbow function, especially the range of elbow flexion. The acceptable maximum degree of residual malrotation deformity expressed as the LRP value was 26.5%.


Subject(s)
Bone Wires , Humeral Fractures , Child , Humans , Retrospective Studies , Treatment Outcome , Humeral Fractures/diagnostic imaging , Humeral Fractures/surgery , Rotation , Fracture Fixation, Internal
17.
Sci Immunol ; 9(91): eadg8691, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241399

ABSTRACT

Allergic diseases are common, affecting more than 20% of the population. Genetic variants in the TGFß pathway are strongly associated with atopy. To interrogate the mechanisms underlying this association, we examined patients and mice with Loeys-Dietz syndrome (LDS) who harbor missense mutations in the kinase domain of TGFΒR1/2. We demonstrate that LDS mutations lead to reduced TGFß signaling and elevated total and allergen-specific IgE, despite the presence of wild-type T regulatory cells in a chimera model. Germinal center activity was enhanced in LDS and characterized by a selective increase in type 2 follicular helper T cells (TFH2). Expression of Pik3cg was increased in LDS TFH cells and associated with reduced levels of the transcriptional repressor SnoN. PI3Kγ/mTOR signaling in LDS naïve CD4+ T cells was elevated after T cell receptor cross-linking, and pharmacologic inhibition of PI3Kγ or mTOR prevented exaggerated TFH2 and antigen-specific IgE responses after oral antigen exposure in an adoptive transfer model. Naïve CD4+ T cells from nonsyndromic allergic individuals also displayed decreased TGFß signaling, suggesting that our mechanistic discoveries may be broadly relevant to allergic patients in general. Thus, TGFß plays a conserved, T cell-intrinsic, and nonredundant role in restraining TFH2 development via the PI3Kγ/mTOR pathway and thereby protects against allergic disease.


Subject(s)
Hypersensitivity , Transforming Growth Factor beta , Animals , Humans , Mice , Hypersensitivity/metabolism , Immunoglobulin E , Th2 Cells , TOR Serine-Threonine Kinases
18.
BMC Musculoskelet Disord ; 25(1): 45, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200474

ABSTRACT

BACKGROUND: Alamandine is a newly characterized peptide of renin angiotensin system. Our study aims to investigate the osteo-preservative effects of alamandine, explore underlying mechanism and bring a potential preventive strategy for postmenopausal osteoporosis in the future. METHODS: An ovariectomy (OVX)-induced rat osteoporosis model was established for in vivo experiments. Micro-computed tomography and three-point bending test were used to evaluate bone strength. Histological femur slices were processed for immunohistochemistry (IHC). Bone turnover markers and nitric oxide (NO) concentrations in serum were determined with enzyme-linked immunosorbent assay (ELISA). The mouse embryo osteoblast precursor (MC3T3-E1) cells were used for in vitro experiments. The cell viability was analysed with a Cell Counting Kit­8. We performed Alizarin Red S staining and alkaline phosphatase (ALP) activity assay to observe the differentiation status of osteoblasts. Western blotting was adopted to detect the expression of osteogenesis related proteins and AMP-activated protein kinase/endothelial nitric oxide synthase (AMPK/eNOS) in osteoblasts. DAF-FM diacetate was used for semi-quantitation of intracellular NO. RESULTS: In OVX rats, alamandine alleviated osteoporosis and maintained bone strength. The IHC showed alamandine increased osteocalcin and collagen type I α1 (COL1A1) expression. The ELISA revealed alamandine decreased bone turnover markers and restored NO level in serum. In MC3T3-E1 cells, alamandine promoted osteogenic differentiation. Western blotting demonstrated that alamandine upregulated the expression of osteopontin, Runt-related transcription factor 2 and COL1A1. The intracellular NO was also raised by alamandine. Additionally, the activation of AMPK/eNOS axis mediated the effects of alamandine on MC3T3-E1 cells and bone tissue. PD123319 and dorsomorphin could repress the regulating effect of alamandine on bone metabolism. CONCLUSION: Alamandine attenuates ovariectomy-induced osteoporosis by promoting osteogenic differentiation via AMPK/eNOS axis.


Subject(s)
Oligopeptides , Osteogenesis , Osteoporosis , Mice , Female , Animals , Rats , AMP-Activated Protein Kinases , Nitric Oxide Synthase Type III , X-Ray Microtomography , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control
19.
Trials ; 25(1): 77, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254211

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 will coexist with humans for a long time, and it is therefore important to develop effective treatments for coronavirus disease 2019 (COVID-19). Recent studies have demonstrated that antiviral therapy is a key factor in preventing patients from progressing to severe disease, even death. Effective and affordable antiviral medications are essential for disease treatment and are urgently needed. Azvudine, a nucleoside analogue, is a potential low-cost candidate with few drug interactions. However, validation of high-quality clinical studies is still limited. METHODS: This is a multicentre, randomized, double-blind, placebo-controlled phase III clinical trial involving 1096 adult patients with mild-to-moderate symptoms of COVID-19 who are at high risk for progression to severe COVID-19. Patients will be randomized to (1) receive azvudine tablets 5 mg daily for a maximum of 7 days or (2) receive placebo five tablets daily. All participants will be permitted to use a standard treatment strategy except antiviral therapy beyond the investigational medications. The primary outcome will be the ratio of COVID-19-related critical illness and all-cause mortality among the two groups within 28 days. DISCUSSION: The purpose of this clinical trial is to determine whether azvudine can prevent patients at risk of severe disease from progressing to critical illness and death, and the results will identify whether azvudine is an effective and affordable antiviral treatment option for COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT05689034. Registered on 18 January 2023.


Subject(s)
Azides , COVID-19 , Deoxycytidine/analogs & derivatives , Adult , Humans , Critical Illness , SARS-CoV-2 , Antiviral Agents/adverse effects , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase III as Topic
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166919, 2024 02.
Article in English | MEDLINE | ID: mdl-38251428

ABSTRACT

Abdominal aortic aneurysm (AAA) is typically asymptomatic but a devastating cardiovascular disorder, with overall mortality exceeding 80 % once it ruptures. Some patients with AAA may also have comorbid metabolic syndrome (MS), suggesting a potential common underlying pathogenesis. Mitochondrial dysfunction has been reported as a key factor contributing to the deterioration of both AAA and MS. However, the intricate interplay between metabolism and mitochondrial function, both contributing to the development of AAA, has not been thoroughly explored. In this study, we identified candidate genes related to mitochondrial function in AAA and MS. Subsequently, we developed a nomoscore model comprising hub genes (PINK1, ACSL1, CYP27A1, and SLC25A11), identified through the application of two machine learning algorithms, to predict AAA. We observed a marked disparity in immune infiltration profiles between high- and low-nomoscore groups. Furthermore, we confirmed a significant upregulation of the expression of the four hub genes in AAA tissues. Among these, ACSL1 showed relatively higher expression in LPS-treated RAW264.7 cell lines, while CYP27A1 exhibited a notable decrease. Moreover, SLC25A11 displayed a significant upregulation in AngII-treated VSMCs. Conversely, the expression level of PINK1 declined in LPS-stimulated RAW264.7 cell lines but significantly increased in AngII-treated VSMCs. In vivo experiments revealed that the activation of PINK1-mediated mitophagy inhibited the development of AAA in mice. In this current study, we have innovatively identified four mitochondrial function-related genes through integrated bioinformatic analysis. This discovery sheds light on the regulatory mechanisms and unveils promising therapeutic targets for the comorbidity of AAA and MS.


Subject(s)
Aortic Aneurysm, Abdominal , Metabolic Syndrome , Protein Kinases , Animals , Humans , Mice , Aortic Aneurysm, Abdominal/genetics , Lipopolysaccharides , Metabolic Syndrome/complications , Metabolic Syndrome/genetics , Mitochondria/genetics , Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...