Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 346: 140606, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939928

ABSTRACT

H2O2 is widely used in the treatment of refractory organic pollutants.However, due to its explosive and corrosive chemical characteristics, H2O2 will bring great safety risks and troubles in transportation.So we chose sodium percarbonate(SPC) to be used in catalytic wet peroxide oxidation enhanced by swirl flow(SF-CWPO) and we designed carbon nanotubes with Ni single atom sites(Ni-NCNTs/AC) to activate SPC to treat an m-cresol wastewater containing Si.Meanwhile, artificial intelligence which used Artificial neural network (ANN) was used to optimize the conditions.Under the conditions of pH = 9.27, reaction time of 8.91 min, m-cresol concentration is 59.09 mg L-1, SPC dosage is 2.80 g L-1 and Na2SiO3·9H2O dosage is 77.27 mg L-1, the degradation rate of total organic carbon(TOC) and m-cresol reaches 94.37% and 100%, respectively.Finally, the applicability of Ni-NCNTs/AC-SPC-SF-CWPO technology was evaluated in a wastewater system of a sewage treatment enterprise and Fourier transform ion cyclotron resonance mass spectrum(FT-ICR MS) analysis and chemical oxygen demand(COD) analysis showed the great ability of Ni-NCNTs/AC-SPC-SF-CWPO technology to treat wastewater.It is believed that this paper is of great significance to the design and construction of the in-depth research and industrial application of SF-CWPO.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Hydrogen Peroxide , Wastewater , Silicon , Artificial Intelligence , Peroxides , Oxidation-Reduction , Catalysis
2.
Chemosphere ; 298: 134356, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35306055

ABSTRACT

Catalytic wet peroxide oxidation (CWPO) enhanced by swirl flow (SF-CWPO) was developed for the first time to explore the degradation of m-cresol in 3%iron/activated carbon catalysed Fenton reaction. Under the conditions of catalyst dosage of 0.6 g/L, H2O2 dosage of 1.5 mL/L, pH = 6 and reaction time of 20 min, the degradation rate of m-cresol and total organic carbon in 100 mg/L m-cresol solution reaches 81.5% and 82%, respectively. The reaction speed in the SF-CWPO system with an independently designed cyclone reactor was two times faster than the traditional CWPO systems. In addition, via liquid chromatography-mass spectrometry analysis of the degradation product, the possible degradation pathway for m-cresol was proposed. The proposed SF-CWPO can potentially be an efficient and economical method to treat organic pollutants in wastewaters.


Subject(s)
Peroxides , Water Pollutants, Chemical , Catalysis , Cresols/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Peroxides/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...