Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 19(2): 317-26, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24503167

ABSTRACT

Neuroinflammatory responses play a crucial role in the pathogenesis of Alzheimer's disease (AD). Ginsenoside Rg5 (Rg5), an abundant natural compound in Panax ginseng, has been found to be beneficial in treating AD. In the present study, we demonstrated that Rg5 improved cognitive dysfunction and attenuated neuroinflammatory responses in streptozotocin (STZ)-induced memory impaired rats. Cognitive deficits were ameliorated with Rg5 (5, 10 and 20mg/kg) treatment in a dose-dependent manner together with decreased levels of inflammatory cytokines TNF-α and IL-1ß (P<0.05) in brains of STZ rats. Acetylcholinesterase (AChE) activity was also significantly reduced by Rg5 whereas choline acetyltransferase (ChAT) activity was remarkably increased in the cortex and hippocampus of STZ-induced AD rats (P<0.05). In addition, Congo red and immunohistochemistry staining results showed that Rg5 alleviated Aß deposition but enhanced the expressions of insulin-like growth factors 1 (IGF-1) and brain derived neurophic factor (BDNF) in the hippocampus and cerebral cortex (P<0.05). Western blot analysis also demonstrated that Rg5 increased remarkably BDNF and IGF-1 expressions whereas decreased significantly Aß deposits (P<0.05). Furthermore, it was observed that the expressions of COX-2 and iNOS were significantly up-regulated in STZ-induced AD rats and down-regulated strongly (P<0.05) by Rg5 compared with control rats. These data demonstrated that STZ-induced learning and memory impairments in rats could be improved by Rg5, which was associated with attenuating neuroinflammatory responses. Our findings suggested that Rg5 could be a beneficial agent for the treatment of AD.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cognition Disorders/drug therapy , Ginsenosides/therapeutic use , Neuroprotective Agents/therapeutic use , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Animals , Anti-Inflammatory Agents/pharmacology , Behavior, Animal/drug effects , Choline O-Acetyltransferase/metabolism , Cognition Disorders/chemically induced , Cognition Disorders/metabolism , Disease Models, Animal , Ginsenosides/pharmacology , Interleukin-1beta/metabolism , Male , Maze Learning/drug effects , Memory/drug effects , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar , Streptozocin , Tumor Necrosis Factor-alpha/metabolism
2.
Hereditas ; 145(2): 92-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18503711

ABSTRACT

This paper reports cloning and characterisation of four novel low-molecular-weight glutenin subunit (LMW-GS) genes (designated as TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2) from the genomic DNA of Triticum dicoccoides, T. zhukovskyi and Aegilops longissima. The coding regions of TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2 were 1056 bp, 903 bp, 1056 bp and 1050 bp in length, encoding 350, 300, 350 and 348 amino acid residues, respectively. The deduced amino acid sequences showed that the four novel genes were classified as LMW-m types and the comparison results indicated that the four genes had a more similar structure and a higher level of homology with the LMW-m genes than the LMW-s and -i types genes. However, the first cysteine residue's positions of TzLMW-m2, TdLMW-m1 and AlLMW-m2 were different from the others. Moreover, AlLMW-m2, TdLMW-m1 and TzLMW-m2 all possessed a longer repetitive domain, which was considered to be associated with good quality of wheat. The secondary structure prediction revealed that the content of beta-strand in AlLMW-m2 and TdLMW-m1 exceeded the positive control, suggesting that AlLMW-m2 and TdLMW-m1 should be considered as candidate genes that may have positive effect on dough quality. In order to investigate the evolutionary relationship of the novel genes with the other LMW-GSs, a phylogenetic tree was constructed. The results lead to a speculation that AlLMW-m2, TdLMW-m1 and TzLMW-m2 may be the middle types during the evolution of LMW-m and LMW-s.


Subject(s)
Cloning, Molecular , Genes, Plant , Glutens/genetics , Protein Subunits/genetics , Triticum/genetics , Amino Acid Sequence , Glutens/chemistry , Molecular Sequence Data , Phylogeny , Poaceae/chemistry , Poaceae/genetics , Polymerase Chain Reaction , Protein Subunits/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...