Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 593: 216935, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704136

ABSTRACT

Hepatocellular carcinoma (HCC) is a prevalent malignancy characterized by complex heterogeneity and drug resistance. Resistance to ferroptosis is closely related to the progression of HCC. While HCC tumors vary in their sensitivity to ferroptosis, the precise factors underlying this heterogeneity remain unclear. In this study, we sought to elucidate the mechanisms that contribute to ferroptosis resistance in HCC. Whole-genome CRISPR/Cas9 screen using a subtoxic concentration (IC20) of ferroptosis inducer erastin in the HCC cell line Huh7 revealed TRIM34 as a critical driver of ferroptosis resistance in HCC. Further investigation revealed that TRIM34 suppresses ferroptosis in HCC cells, promoting their proliferation, migration, and invasion both in vitro and in vivo. Furthermore, TRIM34 expression is elevated in HCC tumor tissues, correlating with a poor prognosis. Mechanistically, TRIM34 directly interacts with Up-frameshift 1 (UPF1), a core component of the nonsense-mediated mRNA decay (NMD) pathway, to promote its ubiquitination and degradation. This interaction suppresses GPX4 transcript degradation, thus promoting the protein levels of this critical ferroptosis suppressor in HCC. In light of the close crosstalk between ferroptosis and the adaptive immune response in cancer, HCC cells with targeting knockdown of TRIM34 exhibited an improved response to anti-PD-1 treatment. Taken together, the TRIM34/UPF1/GPX4 axis mediates ferroptosis resistance in HCC, thereby promoting malignant phenotypes. Targeting TRIM34 may thus represent a promising new strategy for HCC treatment.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Ferroptosis/genetics , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Cell Line, Tumor , Animals , Mice , Immunotherapy/methods , Cell Proliferation , Gene Expression Regulation, Neoplastic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Cell Movement
2.
iScience ; 27(6): 109821, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38770131

ABSTRACT

The cyclic AMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) is a crucial regulator of hepatic lipid metabolism and gluconeogenesis and correlates with tumorigenesis. However, the mechanism through which CRTC2 regulates hepatocellular carcinoma (HCC) progression is largely unknown. Here, we found that increased CRTC2 expression predicted advanced tumor grade and stage, as well as worse prognosis in patients with HCC. DNA promoter hypomethylation led to higher CRTC2 expression in HCC. Functionally, CRTC2 contributed to HCC malignant phenotypes through the activated Wnt/ß-catenin pathway, which could be abrogated by the small-molecular inhibitor XAV-939. Moreover, Crtc2 facilitated tumor growth while concurrently downregulating the PD-L1/PD-1 axis, resulting in primary resistance to immunotherapy. In immunocompetent mice models of HCC, targeting Crtc2 in combination with anti-PD-1 therapy prominently suppressed tumor growth by synergistically enhancing responsiveness to immunotherapy. Collectively, targeting CRTC2 might be a promising therapeutic strategy to sensitize immunotherapy in HCC.

3.
J Hepatol ; 80(1): 82-98, 2024 01.
Article in English | MEDLINE | ID: mdl-37838036

ABSTRACT

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is among the most prevalent and lethal cancers worldwide. The tumor microenvironment (TME) contributes to the poor response of patients with HCC to current therapies, while tumor vascular endothelial cells (ECs) are fundamental TME components that significantly contribute to tumor progression. However, the specific functions and mechanisms of tumor vascular ECs in HCC remain unclear. METHODS: We screened and validated diacylglycerol kinase gamma (DGKG) hyper-expression specifically in HCC tumor vascular ECs. Single-cell RNA-sequencing, cytometry by time-of-flight, and in vitro and in vivo studies were performed to investigate the functions of endothelial DGKG. Multiplexed immunohistochemistry staining and flow cytometry were used to evaluate changes in the TME. RESULTS: Functionally, endothelial DGKG promotes tumor angiogenesis and immunosuppressive regulatory T-cell differentiation in HCC. Of significance, we found that HIF-1α activates DGKG transcription by directly binding to its promoter region under hypoxia. Upregulated DGKG promotes HCC progression by recruiting ubiquitin specific peptidase 16 to facilitate ZEB2 deubiquitination, which increases TGF-ß1 secretion, thus inducing tumor angiogenesis and regulatory T-cell differentiation. Importantly, targeting endothelial DGKG potentiated the efficiency of dual blockade of PD-1 and VEGFR-2. CONCLUSION: Hypoxia-induced EC-specific DGKG hyper-expression promotes tumor angiogenesis and immune evasion via the ZEB2/TGF-ß1 axis, suggesting EC-specific DGKG as a potential therapeutic target for HCC. IMPACT AND IMPLICATIONS: Here, we reported that hypoxia-induced endothelial cell-specific DGKG hyper-expression promotes angiogenesis and immune evasion in HCC by recruiting USP16 for K48-linked deubiquitination and inducing the subsequent stabilization of ZEB2, leading to increased TGF-ß1 secretion. Most importantly, endothelial DGKG inhibition greatly improved the efficacy of the dual combination of anti-VEGFR2 and anti-PD-1 treatment in a mouse HCC model, significantly inhibiting the malignant progression of HCC and improving survival. This preclinical study supports the targeting of endothelial DGKG as a potential strategy for precision HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Transforming Growth Factor beta1/metabolism , Endothelial Cells/metabolism , Immune Evasion , Angiogenesis , Cell Line, Tumor , Neovascularization, Pathologic/metabolism , Hypoxia/metabolism , Disease Models, Animal , Tumor Microenvironment
4.
Cell Mol Gastroenterol Hepatol ; 17(3): 399-421, 2024.
Article in English | MEDLINE | ID: mdl-38036082

ABSTRACT

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is a common chronic liver disease worldwide. No effective pharmacologic therapies for MASH have been developed; to develop such promising drugs, the underlying mechanisms regulating MASH need to be elucidated. Here, we aimed to determine the role of ovarian tumor domain-containing protein 5 (OTUD5) in MASH progression and identify a specific mechanism. METHODS: The expression levels of OTUD subfamily under palmitic acid/oleic acid (PAOA) stimulation were screened. OTUD5 expression was assessed in human liver tissues without steatosis, those with simple steatosis, and those with MASH. MASH models were developed in hepatocyte-specific Otud5-knockout mice that were fed high-fat high-cholesterol and high-fat high-cholesterol plus high-fructose/sucrose diet for 16 weeks. RESULTS: The expression of OTUD5 was down-regulated in fatty liver and was negatively related to the progression of MASH. Lipid accumulation and inflammation were exacerbated by Otud5 knockdown but attenuated by Otud5 overexpression under PAOA treatment. Hepatocyte-specific Otud5 deletion markedly exacerbated steatosis, inflammation, and fibrosis in the livers of 2 MASH mouse models. We identified voltage-dependent anion channel 2 (VDAC2) as an OTUD5-interacting partner; OTUD5 cleaved the K48-linked polyubiquitin chains from VDAC2, and it inhibited subsequent proteasomal degradation. The anabolic effects of OTUD5 knockdown on PAOA-induced lipid accumulation were effectively reversed by VDAC2 overexpression in primary hepatocytes. Metabolomic results revealed that VDAC2 is required for OTUD5-mediated protection against hepatic steatosis by maintaining mitochondrial function. CONCLUSIONS: OTUD5 may ameliorate MASH progression via VDAC2-maintained mitochondrial homeostasis. Targeting OTUD5 may be a viable MASH-treatment strategy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Cholesterol/metabolism , Deubiquitinating Enzymes/metabolism , Hepatocytes/metabolism , Homeostasis , Inflammation/pathology , Lipids , Non-alcoholic Fatty Liver Disease/pathology , Ubiquitin-Specific Proteases/metabolism
5.
Cell Metab ; 35(6): 912-927.e7, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37071992

ABSTRACT

Metabolic reprogramming plays a crucial role in the development of hepatocellular carcinoma (HCC). However, the key drivers of metabolic reprogramming underlying HCC progression remain unclear. Using a large-scale transcriptomic database and survival correlation screening, we identify thymidine kinase 1 (TK1) as a key driver. The progression of HCC is robustly mitigated by TK1 knockdown and significantly aggravated by its overexpression. Furthermore, TK1 promotes the oncogenic phenotypes of HCC not only through its enzymatic activity and production of deoxythymidine monophosphate (dTMP) but also by promoting glycolysis via binding with protein arginine methyltransferase 1 (PRMT1). Mechanistically, TK1 directly binds PRMT1 and stabilizes it by interrupting its interactions with tripartite-motif-containing 48 (TRIM48), which inhibits its ubiquitination-mediated degradation. Subsequently, we validate the therapeutic capacity of hepatic TK1 knockdown in a chemically induced HCC mouse model. Therefore, targeting both the enzyme-dependent and -independent activity of TK1 may be therapeutically promising for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Thymidine Kinase/genetics , Thymidine Kinase/metabolism , Ubiquitination , Cell Line, Tumor
6.
Cancer Lett ; 552: 215970, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36265652

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading malignancy of the digestive system, especially in China. Although radiotherapy, chemotherapy, and transarterial chemoembolization have achieved tremendous success, surgical resection remains the primary treatment for HCC patients. Recent studies have shown that intravenous anesthetic drugs may affect the malignant behaviors of tumor cells, ultimately leading to differences in the postoperative prognosis of patients. Etomidate is one of the most widely used intravenous anesthetic drugs for the induction and maintenance of anesthesia in tumor patients undergoing surgery. However, the effects and underlying mechanisms of etomidate on HCC cells have not yet been characterized. Our study indicated that etomidate significantly impedes the malignant progression of HCC cells. Mechanistically, etomidate inhibits phosphorylation and, ultimately, the activity of Janus kinase 2 (JAK2) by competing with ATP for binding to the ATP-binding pocket of JAK2. Thus, it suppresses the JAK2/STAT3 signaling pathway in HCC cells to exert its anti-tumor efficacy. Herein, we provide preclinical evidence that etomidate is the optimal choice for surgical treatment of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Etomidate , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Janus Kinase 2/metabolism , Etomidate/pharmacology , Etomidate/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Signal Transduction , Anesthetics, Intravenous/pharmacology , Anesthetics, Intravenous/therapeutic use , Adenosine Triphosphate
7.
Nat Commun ; 13(1): 7677, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509766

ABSTRACT

Programmed death receptor-1 (PD-1) blockade have achieved some efficacy but only in a fraction of patients with hepatocellular carcinoma (HCC). Programmed cell death 1 ligand 1 (PD-L1) binds to its receptor PD1 on T cells to dampen antigen-tumor immune responses. However, the mechanisms underlying PD-L1 regulation are not fully elucidated. Herein, we identify that tumoral Prdm1 overexpression inhibits cell growth in immune-deficient mouse models. Further, tumoral Prdm1 overexpression upregulates PD-L1 levels, dampening anti-tumor immunity in vivo, and neutralizes the anti-tumor efficacy of Prdm1 overexpression in immune-competent mouse models. Mechanistically, PRDM1 enhances USP22 transcription, thus reducing SPI1 protein degradation through deubiquitination, which enhances PD-L1 transcription. Functionally, PD-1 mAb treatment reinforces the efficacy of Prdm1-overexpressing HCC immune-competent mouse models. Collectively, we demonstrate that the PRDM1-USP22-SPI1 axis regulates PD-L1 levels, resulting in infiltrated CD8+ T cell exhaustion. Furthermore, PRDM1 overexpression combined with PD-(L)1 mAb treatment provides a therapeutic strategy for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Immune Evasion , CD8-Positive T-Lymphocytes , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism
8.
Opt Express ; 30(14): 24461-24480, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237001

ABSTRACT

For FPI sensor demodulation systems to be used in actual engineering measurement, they must have high performance, low cost, stability, and scalability. Excellent performance, however, necessitates expensive equipment and advanced algorithms. This research provides a new absolute demodulation system for FPI sensors that is high-performance and cost-effective. The reflected light from the sensor was demultiplexed into distinct channels using an array waveguide grating (AWG), with the interference spectrum features change translated as the variation of the transmitted intensity in each AWG channel. This data was fed into an end-to-end neural network model, which was utilized to interrogate multiple interference peaks' absolute peak wavelengths simultaneously. This architecturally simple network model can achieve remarkable generalization capabilities without training large-scale datasets using an appropriate data augmentation strategy. Experiments show that in simultaneous multi-wavelength and cavity length interrogations, the proposed system has the precision of up to ± 14 pm and ± 0.07 µm, respectively. The interrogation resolution can theoretically reach the pm level benefit from the neural network method. Furthermore, the system's outstanding demodulation repeatability and suitability were demonstrated. The system is expected to provide a high-performance and cost-effective, reliable solution for practical engineering applications.

9.
Opt Express ; 30(5): 7647-7663, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299522

ABSTRACT

Fiber Bragg grating (FBG) sensors have been widely applied in various applications, especially for structural health monitoring. Low cost, wide range, and low error are necessary for an excellent performance FBG sensor signal demodulation system. Yet the improvement of performance is commonly accompanied by costly and complex systems. A high-performance, low-cost wavelength interrogation method for FBG sensors was introduced in this paper. The information from the FBG sensor signal was extracted by the array waveguide grating (AWG) and fed into the proposed cascaded neural network. The proposed network was constructed by cascading a convolutional neural network and a residual backpropagation neural network. We demonstrate that our network yields a vastly significant performance improvement in AWG-based wavelength interrogation over that given by other machine learning models and validate it in experiments. The proposed network cost-effectively widens the wavelength interrogation range of the demodulation system and optimizes the wavelength interrogation error substantially, also making the system scalable.

SELECTION OF CITATIONS
SEARCH DETAIL
...