Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters










Publication year range
1.
Fitoterapia ; 175: 105947, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570097

ABSTRACT

Employing an MS/MS-based molecular networking-guided strategy, three new eudesmane-type sesquiterpenes (1-3) and one undescribed pseudoguaianolide sesquiterpene (8), along with four known eudesmane-type sesquiterpene lactones (4-7) were extracted and purified from the herbs of Carpesium abrotanoides L. Structural elucidation encompassed comprehensive spectroscopic analysis, NMR calculations, DP4+ analysis, and ECD calculations. The cytotoxicity activity of all isolates was evaluated against two human hepatoma carcinoma cells (HepG2 and Hep3B) in vitro. It was demonstrated that compounds 2 and 4 showed moderate cytotoxic against HepG2 and Hep3B cells. Furthermore, all compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity. Particularly noteworthy is that, in comparison to the positive control, compound 1 demonstrated significant AChE inhibition with an inhibition rate of 77.86%. In addition, the inhibitory mechanism of compound 1 were investigated by in silico docking analyze and molecular dynamic simulation.


Subject(s)
Antineoplastic Agents, Phytogenic , Asteraceae , Cholinesterase Inhibitors , Molecular Docking Simulation , Sesquiterpenes , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/chemistry , Molecular Structure , Asteraceae/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Hep G2 Cells , Tandem Mass Spectrometry , Cell Line, Tumor , China , Acetylcholinesterase/metabolism
2.
Bioorg Chem ; 147: 107367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626492

ABSTRACT

Lung cancer is the leading cause of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. Euphorbia kansui yielded 13-oxyingenol-dodecanoate (13OD), an ingenane-type diterpenoid, which had a strong cytotoxic effect on NSCLC cells. The underlying mechanism and potential target, however, remained unknown. The study found that 13OD effectively inhibited the cell proliferation and colony formation of NSCLC cells (A549 and H460 cells), with less toxicity in normal human lung epithelial BEAS-2B cells. Moreover, 13OD can cause mitochondrial dysfunction, and apoptosis in NSCLC cells. Mechanistically, the transcriptomics results showed that differential genes were mainly enriched in the mTOR and AMPK signaling pathways, which are closely related to cellular autophagy, the related indicators were subsequently validated. Additionally, bafilomycin A1 (Baf A1), an autophagy inhibitor, reversed the mitochondrial damage caused by 13OD. Furthermore, the Omics and Text-based Target Enrichment and Ranking (OTTER) method predicted ULK1 as a potential target of 13OD against NSCLC cells. This hypothesis was further confirmed using molecular docking, the cellular thermal shift assay (CETSA), and Western blot analysis. Remarkably, ULK1 siRNA inhibited 13OD's toxic activity in NSCLC cells. In line with these findings, 13OD was potent and non-toxic in the tumor xenograft model. Our findings suggested a possible mechanism for 13OD's role as a tumor suppressor and laid the groundwork for identifying targets for ingenane-type diterpenoids.


Subject(s)
Autophagy-Related Protein-1 Homolog , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Structure-Activity Relationship , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/antagonists & inhibitors , Molecular Structure , Diterpenes/pharmacology , Diterpenes/chemistry , Apoptosis/drug effects , Animals , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
3.
Bioorg Chem ; 145: 107208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354501

ABSTRACT

Hepatocellular carcinoma (HCC) is a major challenge for human healthy. Daphnane-type diterpenes have attracted increasingly attention due to remarkable pharmaceutical potential including anti-HCC activity. To further develop this class of compounds as inhibitors of HCC, the daphnane diterpenoids 12-O-debenzoyl-Yuanhuacine (YHC) and 12-hydroxydaphnetoxin (YHE) were prepared by a standard chemical transformation from dried flower buds of the Daphne genkwa plant. Subsequently, 22 daphnane diterpenoidal 1,3,4-oxdiazole derivatives were rationally designed and synthesized based on YHC and YHE. The assessment of the target compound's anti-hepatocellular carcinoma activity revealed that YHC1 exhibited comparable activity to sorafenib in the Hep3B cell line, while demonstrating higher selectivity. The mechanistic investigation demonstrates that compound YHC1 induces cell cycle arrest at the G0/G1 phase, cellular senescence, apoptosis, and elevates cellular reactive oxygen species levels. Moreover, molecular docking and CETSA results confirm the interaction between YHC1 and YAP1 as well as TEAD1. Co-IP experiments further validated that YHC1 can effectively inhibit the binding of YAP1 and TEAD1. In conclusion, YHC1 selectively targets YAP1 and TEAD1, exhibiting its anti-hepatocellular carcinoma effects through the inhibition of their interaction.


Subject(s)
Carcinoma, Hepatocellular , Daphne , Diterpenes , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Daphne/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Oxadiazoles/chemistry , Oxadiazoles/pharmacology
4.
Phytochemistry ; 220: 113992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301947

ABSTRACT

Seven undescribed neovibsane-type diterpenoids (1-7) were isolated from the leaves of Viburnum odoratissimum. Their planar structures and relative configurations were elucidated based on a combination of 1D and 2D NMR analysis. The absolute configurations were confirmed by Rh2(OCOCF3)4-induced ECD analysis and comparison of experimental and TDDFT-calculated ECD spectrum. Based on the empirical results of the ECD of in situ formed Rh-complexes, rapid determination of the absolute configuration of C-14 within vibsane-type diterpenoids was proposed. In addition, 3 exhibited a high neuroblastoma cell protective effect of 81.8 % at 50 µM (the control group showed a neuroblastoma cell protective effect of 56.2 % at 50 µM).


Subject(s)
Diterpenes , Neuroblastoma , Viburnum , Viburnum/chemistry , Molecular Structure , Diterpenes/chemistry , Plant Leaves/chemistry
5.
J Asian Nat Prod Res ; : 1-13, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347741

ABSTRACT

Gastric cancer is one of the common malignant tumors. It is reported that daphne-type diterpenes have inhibitory effects on gastric cancer cells, but the mechanism is still unknown. To explore the detailed mechanism of the anticancer effect of daphne-type diterpenes, we carried out an integrated network pharmacology prediction study and selected an effective component (yuanhuacine, YHC) for the following validation in silico and in vitro. The result showed that daphne-type diterpenes exerted an anti-tumor effect by targeting proto-oncogene tyrosine-protein kinase SRC as well as regulating the Ras/MAPK signaling pathway, which caused the apoptosis and mitochondrial damage in gastric cancer cells.

6.
Bioorg Chem ; 143: 107007, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38039928

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with high mortality and poor prognosis. WBDC-1 is a novel highly oxidized germacranolide from the Elephantopus tomentosus in our previous work, which has excellent anti-HCC activity, but the detailed mechanism is still unclear. In this study, we found that WBDC-1 was able to inhibit the proliferation and colony formation of Hep3B and HepG2 cells, as well as the cell migration ability and EMT. In addition, WBDC-1 showed no obvious toxicity to normal liver epithelial cells L-02. The potential targets of WBDC-1 were predicted by network pharmacology, and the following verified experiments showed that WBDC-1 exerted anti-HCC effect by targeting EGFR. Mechanismly, subsequent biological analysis showed that WBDC-1 can inhibit EGFR and its downstream RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways. Overexpression of EGFR reversed the anticancer properties of WBDC-1. Consistent with in vitro experiments, WBDC-1 was able to inhibit tumor growth and was non-toxic in xenograft tumor models. In summary, this study revealed a potential tumor suppressive mechanism of WBDC-1 and provided a novel strategy for HCC treatment. It also laid a foundation for further research on the anti-tumor effect of highly oxidized germacranolides.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Sesquiterpenes, Germacrane , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , ErbB Receptors
7.
Fitoterapia ; 172: 105762, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040095

ABSTRACT

Six undescribed guaianolide sesquiterpenes (1-6) were obtained from the aerial parts of Daphne penicillata. Their structures and absolute configuration were elucidated by HRESIMS, NMR analyses, ECD calculations and single-crystal X-ray diffraction analysis. Structurally, all compounds possess the typical 5,7-fused system of 8,12-guaianolides and this guaianolide-type was first reported to be isolated from Daphne penicillata. All compounds (1-6) were evaluated for anti-inflammatory and cytotoxic activity. Among them, compounds 1 and 5 showed moderate inhibitory effects on LPS-induced NO production in BV2 cells and 4 displayed potential inhibition against Hep3B cells with an IC50 value of 7.33 µM.


Subject(s)
Daphne , Sesquiterpenes , Molecular Structure , Sesquiterpenes, Guaiane/pharmacology , Sesquiterpenes/chemistry , Plant Components, Aerial/chemistry
8.
Phytochemistry ; 218: 113950, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101591

ABSTRACT

Eight structurally diverse rearranged sesquiterpenoids, including seven undescribed sesquiterpenoids (1a/1b and 3-8) were obtained from the aerial parts of Daphne penicillata. 1a/1b, 3, 5 and 6 possess rare rearranged guaiane skeletons and 4 represents the first example of rearranged carotene sesquiterpenoids. Their structures and absolute configurations were determined by extensive spectroscopic analyses, NMR and ECD calculations. Interestingly, 1a and 1b were a pair of magical interconverting epimers that may interconvert by retro-aldol condensation. The mechanism of interconversion has been demonstrated indirectly by 9-OH derivatization of 1a/1b and a hypothetical biogenetic pathway was proposed. All compounds were evaluated for anti-inflammatory and cytotoxic activities. Among them, 1a/1b and 2 exhibited potential inhibitory activities on the production of NO against LPS-induced BV2 microglial cells.


Subject(s)
Daphne , Sesquiterpenes , Daphne/chemistry , Molecular Structure , Isomerism , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Plant Components, Aerial
9.
Phytochemistry ; 215: 113858, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37709157

ABSTRACT

Structural characteristics-guided investigation of Ailanthus altissima (Mill.) Swingle resulted in the isolation and identification of seven undescribed potential Michael reaction acceptors (1-7). Ailanlactone A (1) possesses an unusual 1,7-epoxy-11,12-seco quassinoid core. Ailanterpene B (6) was a rare guaianolide-type sesquiterpene with a 5/6/6/6-fused skeleton. Their structures were determined through extensive analysis of physiochemical and spectroscopic data, quantum chemical calculations, and single crystal X-ray crystallographic technology using Cu Kα radiation. The cytotoxic activities of isolates on HepG2 and Hep3B cells were evaluated in vitro. Encouragingly, ailanaltiolide K (4) showed significant cytotoxicity against Hep3B cells with IC50 values of 1.41 ± 0.21 µM, whose covalent binding mode was uncovered in silico.


Subject(s)
Ailanthus , Quassins , Ailanthus/chemistry , Plant Extracts/chemistry , Plant Leaves , Quassins/chemistry
10.
Phytochemistry ; 215: 113857, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716545

ABSTRACT

A chemical investigation of Solanum lyratum Thunb. (Solanaceae) afforded six pairs of enantiomeric lignanamides consisting of twelve undescribed compounds, along with two undescribed racemic mixtures, and the separations of the enantiomers were accomplished by chiral-phase HPLC. The structures of these undescribed compounds were elucidated by the analysis of spectroscopic data, NMR and electronic circular dichroism calculations. All isolated compounds were assessed for neuroprotective activities in H2O2-induced human neuroblastoma SH-SY5Y cells, and acetylcholinesterase (AChE) inhibitory activities. Among tested isolates, some enantiomeric lignanamides exhibited conspicuous neuroprotective effects and AChE inhibitory effect.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Solanum , Humans , Molecular Structure , Hydrogen Peroxide , Acetylcholinesterase , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry
11.
Chem Biodivers ; 20(9): e202300941, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37548481

ABSTRACT

Four pairs of aryldihydronaphthalene-type lignanamide enantiomers were isolated from Solanum lyratum (Solanaceae). The enantiomeric separation was accomplished by chiral-phase HPLC, and five undescribed compounds were elucidated. Analysis by various spectroscopy and ECD calculations, the structures of undescribed compounds were illuminated. The neuroprotective effects of all compounds were evaluated using H2 O2 -induced human neuroblastoma SH-SY5Y cells and AchE inhibition activity. Among them, compound 4 a exhibited remarkable neuroprotective effects at high concentrations of 25 and 50 µmol/L comparable to Trolox. Compound 1 a showed the highest AchE inhibition with the IC50 value of 3.06±2.40 µmol/L. Molecular docking of the three active compounds was performed and the linkage between the compounds and the active site of AchE was elucidated.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Solanum , Humans , Solanum/chemistry , Neuroprotective Agents/chemistry , Molecular Docking Simulation , Stereoisomerism , Molecular Structure
12.
J Org Chem ; 88(17): 12385-12393, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37585921

ABSTRACT

Cyclovibsanones A-D (1-4, respectively), featuring unprecedented caged tricyclo[5.4.1.05,9]dodecane and bicyclo[4.2.1]hexane cores, were isolated from the leaves of Viburnum odoratissimum. Their structures as well as that of one chemical derivative (5), which was transformed from 2, were determined by spectroscopic data, theoretical calculations, and the ML-JDP4/MAEΔΔδ methods. In addition, compounds 1 and 2 were found to possess dissimilarities in acid tolerance during nuclear magnetic resonance (NMR) experiments. The potential mechanism was consequently postulated and further supported through NMR analysis and mechanistic calculations. Biologically, chemical derivative 5 exerted antiproliferative activity against HepG2 cells.


Subject(s)
Diterpenes , Humans , Molecular Structure , Diterpenes/chemistry , Plant Leaves/chemistry , Magnetic Resonance Spectroscopy , Hep G2 Cells
13.
Nat Prod Res ; : 1-6, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615118

ABSTRACT

Ingenane-type diterpenoids (ITDs) are distinct components of plants belonging to the genus Euphorbia. These compounds have significant cytotoxic effects on non-small cell lung cancer (NSCLC) cells. However, the underlying molecular mechanism has yet to be reported. To explore the mechanism of the anticancer effect of ITDs, we carried out a network pharmacology prediction study. PPI network suggested that SRC and PI3K had high levels of interaction. In addition, KEGG analysis revealed that these common targets were significantly enriched in the PI3K/Akt signalling pathway. 13-oxyingenol-dodecanoate (13OD) was used for validation after the biological evaluation of some ITDs against NSCLC cells. It demonstrated that 13OD could significantly inhibit the growth of NSCLC cells by inducing apoptosis. The results from molecular docking and Western blotting showed that 13OD interacted with SRC and PI3K and down-regulated the SRC/PI3K/Akt signalling pathway in NSCLC cells. This study provided the underlying mechanism of ITDs against NSCLC.

14.
Phytochemistry ; 212: 113725, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37224912

ABSTRACT

Daphnane-type diterpenoids, which are scarce in nature, exhibit potent growth-inhibitory activities against various cancer cells. To identify more daphnane-type diterpenoids, the phytochemical components in the root extracts of Stellera chamaejasme L. were analysed in this study using the Global Natural Products Social platform and the MolNetEnhancer tool. Three undescribed 1α-alkyldaphnane-type diterpenoids (1-3; named stelleradaphnanes A-C) and 15 known analogues were isolated and characterised. The structures of these compounds were determined using ultraviolet and nuclear magnetic resonance spectroscopy. The stereo configurations of the compounds were determined using electronic circular dichroism. Next, the growth-inhibitory activities of isolated compounds against HepG2 and Hep3B cells were examined. Compound 3 exhibited potent growth-inhibitory activities against HepG2 and Hep3B cells with half-maximal inhibitory concentration values of 9.73 and 15.97 µM, respectively. Morphological and staining analyses suggested that compound 3 induced apoptosis in HepG2 and Hep3B cells.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Liver Neoplasms , Thymelaeaceae , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Diterpenes/pharmacology , Diterpenes/chemistry , Cell Line , Thymelaeaceae/chemistry , Molecular Structure
16.
Phytomedicine ; 114: 154744, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36934667

ABSTRACT

BACKGROUND: Acute lung injury (ALI) has the attribution of excessive inflammation of the lung. Jinzhen oral liquid (JO), a famous Chinese recipe used to treat ALI, has a favorable therapeutic effect on ALI. However, its anti-inflammatory mechanism has not been extensively studied. PURPOSE: This study was to elucidate the effects of JO on lipopolysaccharide (LPS)-induced ALI and its molecular mechanism. METHODS: An ALI model was established by intratracheal instillation of LPS (2 mg/50 µl). The open field experiment was carried out to explore the spontaneous movement and exploratory behavior of ALI mice. Cytokines levels concentrations (IL-6, IL-10 and TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA). Network pharmacology was used to predict the mechanism of JO against ALI. Immunofluorescence, co-immunoprecipitation, fluorescence resonance energy transfer (FRET), Western blot and RT-PCR were used to verify the molecular mechanisms of JO. RESULTS: The in vivo results suggested that JO (1, 2, 4 g/kg) dose-dependently improved the exercise performance of mice and reduced the lung W/D weight ratio as well as the production of IL-6 and TNF-α, but increased the release of IL-10 in the ALI group. The network pharmacological analysis demonstrated that the Toll-like receptor (TLR) pathway might be the fundamental action mechanisms of JO against ALI. Immunofluorescence staining and co-immunoprecipitation analysis showed that JO decreased the expression levels of TLR4 and MyD88 and reduced their interaction in the lung tissue of ALI mice. Meanwhile, JO decreased nuclear translocation and phosphorylation of NF-κB P65. The results from cellular experiments were in line with those in vivo. The FRET experiment also confirmed that JO disturbed the interaction of TLR4 and MyD88. Subsequently, we also found that the six indicative components of JO have the similar therapeutic effect as JO. CONCLUSIONS: In summary, we suggested that JO suppressed the TLR4/MyD88/NF-κB signaling pathway, thus inhibiting LPS-induced ALI in vitro and in vivo. The clarified mechanism provided an important theoretical basis and a novel treatment strategy for the ALI treatment of JO.


Subject(s)
Acute Lung Injury , NF-kappa B , Humans , NF-kappa B/metabolism , Lipopolysaccharides/adverse effects , Myeloid Differentiation Factor 88/metabolism , Interleukin-10/metabolism , Toll-Like Receptor 4/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Acute Lung Injury/drug therapy , Lung/metabolism
17.
J Nat Prod ; 86(2): 290-306, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36745506

ABSTRACT

The prenylated flavonoid icaritin (ICT, 1), a new drug for treating advanced hepatocellular carcinoma (HCC), was selected as a template to develop more potent inhibitors. An initial semisynthetic modification of ICT was performed to obtain a structure-activity relationship (SAR), which indicated that the cytotoxicity is enhanced by OH-3 rhamnosylation and that OH-7 is an important modification site. Based on the results of the SAR study, 46 N-containing ICT derivatives were synthesized and evaluated as the anti-HCC inhibitors. The results showed that most of the derivatives produced inhibited three HCC cell lines used (Hep3B, HepG2 and SMMC-7721). The modification strategy was validated by 3D-QSAR, which provided information for the further design and optimization of ICT. The most potent compound, 11c, exhibited IC50 values of 7.6 and 3.1 µM against HepG2 and SMMC-7721 cells, respectively, which were more potent than those of ICT and sorafenib, respectively. Further mechanistic studies indicated that 11c caused arrest at the G0/G1 phase in the cell cycle and induced cell apoptosis in HepG2 and SMMC-7721 cells.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Flavonoids/pharmacology , Cell Line, Tumor , Structure-Activity Relationship , Quantitative Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Cell Proliferation , Apoptosis , Drug Screening Assays, Antitumor
18.
Chem Biodivers ; 20(4): e202300067, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36810976

ABSTRACT

In this phytochemical investigation, two pairs of new phenylethanoid derivative enantiomers (1a/1b and 2a/2b), a new phenylethanoid derivative 3b, and seven known compounds (3a, 4-9) were isolated from the leaves of Picrasma quassioides. Spectroscopic techniques were used for the elucidation of their chemical structures, and the absolute configurations were determined by a comparison between the experimental and calculated ECD data, as well as the application of Snatzke's method. Compounds (1a/1b-3a/3b) were measured for their production of NO levels in LPS-induced BV-2 microglial cells. The results showed that all compounds exhibited potential inhibitory effects, and compound 1a showed stronger activity than the positive control.


Subject(s)
Anti-Inflammatory Agents , Microglia , Phenylethyl Alcohol , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Molecular Structure , Spectrum Analysis , Stereoisomerism , Phenylethyl Alcohol/analogs & derivatives
19.
J Agric Food Chem ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786443

ABSTRACT

Stigma maydis (corn silk) (S. maydis) is a food-based by-product of maize and possesses great nutritional and pharmaceutical value. This study aimed to explore bioactive components from S. maydis. By the guidance of bioactivity-guided approach and Global Natural Products Social (GNPS) molecular networking, 12 terpenoids were discovered from S. maydis. The structures of 11 undescribed compounds (1-11) were determined by detailed spectroscopic analyses, single-crystal X-ray diffraction analysis, specific rotation calculations, electronic circular dichroism (ECD) calculations, and NMR calculations. The neuroprotective and acetylcholinesterase (AChE) inhibitory effects of 1-12 were examined, and most of them showed significant or moderate activities. The underlying neuroprotective mechanism of 4 and 5 was revealed by Hoechst 33258, AO-EB, and JC-1 staining assays. This work illustrated the potential of S. maydis as a prospective natural source of bioactive compounds in food and pharmaceutical industries.

20.
Phytochemistry ; 208: 113609, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36758886

ABSTRACT

Nine tetrahydrofuran lignans, including three undescribed spiro-lignans, were isolated from Isatis indigotica Fortune (Brassicaceae). Extensive spectroscopic analyses achieved the structure elucidation of these tetrahydrofuran lignans, and quantum chemical calculation combined with the MAEΔΔδ parameter. Notably, isatispironeols A-B have a unique spiro[dienone-tetrahydrofuran] molecular core. These spiro[dienone-tetrahydrofuran] lignans showed comparable neuroprotective effects as the positive control in the H2O2-induced SH-SY5Y cells model. In addition, (-)-(7R,8S,1'R,7'R,8'R)-isatispironeol A possessed more significant AChE inhibitory activity, further interact sites were also predicted by the in silico assay.


Subject(s)
Isatis , Lignans , Neuroblastoma , Humans , Lignans/chemistry , Isatis/chemistry , Acetylcholinesterase , Cholinesterase Inhibitors , Hydrogen Peroxide , Furans/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...