Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Int Microbiol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028370

ABSTRACT

In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L-1. After a 24-h incubation in LB medium with 10 mg·L-1 Hg2+, the removal, adsorption, and volatilization rates of Hg2+ were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn2+, Zn2+, and Pb2+. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L-1 and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg-1. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.

2.
Environ Sci Process Impacts ; 26(6): 1064-1076, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38721825

ABSTRACT

Cr(VI) has been a carcinogen for organisms and a hazard to human health throughout the food chain. To explore a cost-effective and efficient method for removing Cr(VI), a Cr-resistant strain named LBA108 was isolated from the soil of a molybdenum-lead mining area. It was identified as Microbacterium through biochemical tests and 16S rDNA sequence analysis. Following 48 hours of incubation in LB culture medium containing 60 mg L-1 Cr(VI), the LBA108 strain exhibited reduction and adsorption rates for Cr(VI) at 96.64% and 15.86%, respectively. The removal mechanism was subsequently confirmed through Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis. In an experimental setup, radish seedlings were cultivated as test crops under varying levels of Cr stress (ranging from 0 to 7 mg L-1) in a hydroponic experiment. With the inoculation of the LBA108 strain, the fresh weight of radish seedlings increased by 2.05 times and plant length increased by 34.5% under 7 mg L-1 Cr stress. In addition, the plant produced more antioxidant enzymes/enhanced antioxidant enzyme activities such as superoxide dismutase and catalase to prevent oxidative stress. Under Cr stress (6 mg L-1), the accumulation of Cr in rhizomes of radish seedlings increased compared to the control group by 91.44%, while the absorption of Cr by leaves decreased by 52.10%. These findings suggest that the LBA108 strain possesses bioremediation capabilities as a microbial-phytoremediation option for Cr-contaminated soil.


Subject(s)
Biodegradation, Environmental , Chromium , Raphanus , Soil Microbiology , Soil Pollutants , Raphanus/microbiology , Soil Pollutants/metabolism , Chromium/metabolism
3.
J Steroid Biochem Mol Biol ; 242: 106547, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38754522

ABSTRACT

Premature ovarian insufficiency (POI) presents a substantial challenge to women's physiological and psychological well-being. Hormone replacement therapy, as the preferred therapeutic approach, involves solely exogenous supplementation of estrogen. Moxibustion, a traditional Chinese external treatment, has been investigated in our previous studies. It not only improves hormone levels and clinical symptoms in POI patients but also safeguards ovarian reserve. This study aims to explore the regulatory mechanisms by which moxibustion modulates hormone levels and restores ovarian function in POI. A POI rat model was established using cyclophosphamide, and moxibustion treatment was applied at acupoints "CV4" and "SP6" for a total of four courses. Subsequently, ovaries from each group were subjected to transcriptome sequencing (Bulk RNA-seq). Target pathways and key genes were selected through enrichment analysis and GSVA scoring, with validation using various techniques including electron microscopy, ELISA, Western blot, and immunohistochemistry. The results demonstrated that moxibustion restored the estrous cycle in POI rats, improved sex hormone levels, reduced the number of atretic follicles, and increased the count of dominant follicles (P<0.05). Bulk RNA-seq analysis revealed that moxibustion downregulated pathways associated with ovarian dysfunction, infertility, and immune responses, upregulated pathways related to follicular development and ovarian steroidogenesis. Furthermore, our data confirmed that moxibustion significantly increased the number of ovarian granulosa cells (GCs) and upregulated the expression of proteins related to steroidogenesis in GCs, including FSHR, P450 arom, cAMP, PKA, and CREB (P<0.05), with no significant effect observed on proteins related to steroidogenesis in theca cells. These outcomes aligned with the RNA-seq results. In conclusion, these findings propose that moxibustion enhances steroidogenesis in GCs through the activation of the cAMP/PKA/CREB pathway, consequently improving impaired ovarian function in POI rats. This study provides robust evidence supporting moxibustion as a targeted intervention for treating POI by specifically regulating steroidogenesis in GCs.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Granulosa Cells , Moxibustion , Primary Ovarian Insufficiency , Animals , Female , Rats , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Granulosa Cells/metabolism , Ovary/metabolism , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/genetics , Rats, Sprague-Dawley , Signal Transduction
4.
Zhongguo Zhen Jiu ; 43(10): 1114-7, 2023 Oct 12.
Article in Chinese | MEDLINE | ID: mdl-37802515

ABSTRACT

OBJECTIVE: To observe the clinical effect of electroacupuncture at acupoints of yangming meridians for sarcopenia. METHODS: A total of 60 patients with sarcopenia were randomized into an observation group and a control group, 30 cases in each group. In the control group, conventional nutrition intervention for sarcopenia was adopted. In the observation group, on the basis of the treatment in the control group, acupuncture was applied at bilateral Binao (LI 14), Quchi (LI 11), Zusanli (ST 36), Yanglingquan (GB 34), etc.,ipsilateral Quchi (LI 11) and Zusanli (ST 36) were connected to electroacupuncture, with discontinuous wave, 2 Hz in frequency, 1-10 mA in intensity, 2 times a week, with a interval of 3 days. A total of 12-week treatment was required in the two groups. Before and after treatment, the appendicular skeletal muscle mass index (ASMI), grip strength, 6 m-walking time, body fat percentage and body moisture percentage were observed in the two groups. RESULTS: Compared with those before treatment, after treatment, ASMI and grip strength were increased while 6 m-walking time was shortened in the two groups (P<0.05); body fat percentage was decreased while body moisture percentage was increased in the observation group (P<0.05). After treatment, in the observation group, ASMI, grip strength and body moisture percentage were increased (P<0.05), 6 m-walking time was shortened and body fat percentage was decreased (P<0.05) compared with those in the control group. CONCLUSION: Electroacupuncture at acupoints of yangming meridians can effectively improve the skeletal muscle mass, muscle function, body fat percentage and body moisture percentage in patients with sarcopenia, and make the distribution of muscle and fat more reasonable.


Subject(s)
Acupuncture Therapy , Electroacupuncture , Meridians , Sarcopenia , Humans , Acupuncture Points , Sarcopenia/therapy
5.
Toxics ; 11(3)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36977027

ABSTRACT

AIMS: To screen heavy metal-tolerant strains from heavy metal-contaminated soil in mining areas and determine the tolerance of the strains to different heavy metals and their removal rates through experiments. METHODS: Mercury-resistant strain LBA119 was isolated from mercury-contaminated soil samples in Luanchuan County, Henan Province, China. The strain was identified by Gram staining, physiological and biochemical tests, and 16S rDNA sequences. The LBA119 strain showed good resistance and removal rates to heavy metals such as Pb2+, Hg2+, Mn2+, Zn2+, and Cd2+ using tolerance tests under optimal growth conditions. The mercury-resistant strain LBA119 was applied to mercury-contaminated soil to determine the ability of the strain to remove mercury from the soil compared to mercury-contaminated soil without bacterial biomass. RESULTS: Mercury-resistant strain LBA119 is a Gram-positive bacterium that appears as a short rod under scanning electron microscopy, with a single bacterium measuring approximately 0.8 × 1.3 µm. The strain was identified as a Bacillus by Gram staining, physiological and biochemical tests, and 16S rDNA sequence analysis. The strain was highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg/L for mercury. Under a 10 mg/L mercury environment, the optimal inoculation amount, pH, temperature, and salt concentration of the LBA119 strain were 2%, 7, 30 °C, and 20 g/L, respectively. In the 10 mg/L Hg2+ LB medium, the total removal rate, volatilization rate, and adsorption rate at 36 h were 97.32%, 89.08%, and 8.24%, respectively. According to tolerance tests, the strain showed good resistance to Pb2+, Mn2+, Zn2+, Cd2+, and other heavy metals. When the initial mercury concentration was 50 mg/L and 100 mg/L, compared with the mercury-contaminated soil that contained an LB medium without bacterial biomass, LBA119 inoculation increased 15.54-37.67% after 30 days of culture. CONCLUSION: This strain shows high bioremediation potential for mercury-contaminated soil.

SELECTION OF CITATIONS
SEARCH DETAIL
...