Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(23): 28248-28257, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37262400

ABSTRACT

The humidity of breath can serve as an important health indicator, providing crucial clinical information about human physiology. Significant progress had been made in the development of flexible humidity sensors. However, improving its humidity sensing performance (sensitivity and durability) is still facing many challenges. In this work, near-field electrohydrodynamic direct writing (NFEDW) was proposed to fabricate humidity sensors with high sensitivity and durability for respiration monitoring. Due to the applied electric field, dense carbon nanotube/cellulose nanofiber (CNT/CNF) networks formed during the printing process that enhance the sensitivity of the sensor. The prepared sensor showed excellent humidity responses, with a maximum response value of 61.5% (ΔR/R0) at 95% relative humidity (RH). Additionally, the sensitivity film prepared by the NFEDW method closely fits the poly(ethylene terephthalate) (PET) substrate, endowing the sensor with outstanding bending (with a maximum curvature of 4.7 cm-1) and folding durability (up to 50 times). The sensitivity of the prepared sensor under different simulated conditions, namely, nose breathing, mouth breathing, coughing, yawning, breath holding, and speaking, was excellent, demonstrating the potential of the sensor for the real-time monitoring of human breath humidity. Thus, the high-performance flexible humidity sensor is suitable for human respiration and health monitoring.


Subject(s)
Nanofibers , Respiration , Humans , Humidity , Monitoring, Physiologic , Cellulose
2.
J Colloid Interface Sci ; 645: 165-175, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37148682

ABSTRACT

High-performance microwave absorption coatings are critically required in the stealth defense system of military platforms. Regrettably, just optimizing the property but neglecting the application feasibility seriously inhibits its practical application in the field of microwave absorption. To face this challenge, the Ti4O7/carbon nanotubes (CNTs)/Al2O3 coatings were successfully fabricated by a plasma-sprayed method. For the different oxygen vacancy-induced Ti4O7 coatings, the enhanced ε' and ε'' values in the frequency of X-band is due to the synergistic manipulation of conductive path, defects and interfacial polarization. The optimal reflection loss of Ti4O7/CNTs/Al2O3 sample (0 wt% CNTs) is -55.7 dB (8.9 GHz of 2.41 mm), while the electromagnetic interference shielding effectiveness of Ti4O7/CNTs/Al2O3 sample (5 wt% CNTs) increases to 20.5 dB as the enhanced electrical conductivity. In special, the flexural strength of Ti4O7/CNTs/Al2O3 coatings first increases from 48.59 MPa (0 wt% CNTs) to 67.13 MPa (2.5 wt% CNTs) and then decreases to 38.31 MPa (5 wt% CNTs), demonstrating that an appropriate amount of CNTs evenly dispersed in the Ti4O7/Al2O3 ceramic matrix can effectively play the role of CNTs as the strengthening phase of the coatings. This research will provide a strategy by tailoring synergistic effect of dielectric loss and conduction loss for oxygen vacancy-mediated Ti4O7 material to broaden the application of absorbing or shielding ceramic coatings.

3.
Microb Cell Fact ; 22(1): 13, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36650525

ABSTRACT

Gene expression data of cell cultures is commonly measured in biological and medical studies to understand cellular decision-making in various conditions. Metabolism, affected but not solely determined by the expression, is much more difficult to measure experimentally. Finding a reliable method to predict cell metabolism for expression data will greatly benefit metabolic engineering. We have developed a novel pipeline, OVERLAY, that can explore cellular fluxomics from expression data using only a high-quality genome-scale metabolic model. This is done through two main steps: first, construct a protein-constrained metabolic model (PC-model) by integrating protein and enzyme information into the metabolic model (M-model). Secondly, overlay the expression data onto the PC-model using a novel two-step nonconvex and convex optimization formulation, resulting in a context-specific PC-model with optionally calibrated rate constants. The resulting model computes proteomes and intracellular flux states that are consistent with the measured transcriptomes. Therefore, it provides detailed cellular insights that are difficult to glean individually from the omic data or M-model alone. We apply the OVERLAY to interpret triacylglycerol (TAG) overproduction by Chlamydomonas reinhardtii, using time-course RNA-Seq data. We show that OVERLAY can compute C. reinhardtii metabolism under nitrogen deprivation and metabolic shifts after an acetate boost. OVERLAY can also suggest possible 'bottleneck' proteins that need to be overexpressed to increase the TAG accumulation rate, as well as discuss other TAG-overproduction strategies.


Subject(s)
Chlamydomonas reinhardtii , Triglycerides , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Genome , Metabolic Engineering
4.
J Hazard Mater ; 425: 127967, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-34915299

ABSTRACT

The development of traditional photocatalytic fuel cell (PFC) is severely hindered by poor visible-light response and limited reaction space. In this study, a visible-light responsive PFC with g-C3N4/BiOI/Ti photoanode was proposed and applied to activate peroxymonosulfate (PMS) to degrade rhodamine B. The degradation rate, maximum power density and maximum photocurrent density of the PMS/PFC system were respectively 95.39%, 103.87 µW cm-2 and 0.62 mA cm-2, which was respectively 1.28, 2.18, and 1.98 times that of PFC. The excellent performance is attributed to the production of more reactive oxygen species and the extension of the reaction space range after the activation of PMS. The activation pathway of PMS and charge transfer pathway of the photoanode were discussed in detail, and it was proposed that PMS was activated by Z-scheme heterojunction g-C3N4/BiOI/Ti photoanode.

SELECTION OF CITATIONS
SEARCH DETAIL
...