Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 132(6): 1789-1797, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30810762

ABSTRACT

KEY MESSAGE: A major QTL QSpl.nau-7D, named HL2, was validated for its effects on head length and kernel number per spike using NIL, and mapped to a 0.2 cM interval using recombinants. Improvement in wheat inflorescence traits such as spike or head length and spikelet number provides an important avenue to increase grain yield potential. In a previous study, QSpl.nau-7D, the major QTL for head length on chromosome 7D, was identified in the recombinant inbred lines derived from Nanda2419 and Wangshuibai. To validate and precisely map this QTL, the Wangshuibai allele was transferred to elite cultivar Yangmai15 through marker-assisted selection. Compared with the recurrent parent, the resultant near-isogenic line (NIL) yielded not only 28% longer spikes on the average but also more spikelets and kernels per spike. Moreover, the NIL had a lower spikelet density and did not show significant kernel weight change. In the F2 population derived from the NIL, QSpl.nau-7D acted like a single semi-dominant gene controlling head length and was therefore designated as Head Length 2 (HL2). With this population, a high-density genetic map was constructed mainly using newly developed markers, and 100 homozygous recombinants including 17 genotypes were obtained. Field experiments showed that the recombinants carrying the 0.2-cM interval flanked by Xwgrb1588 and Xwgrb1902 from Wangshuibai produced longer spikes than those without this Wangshuibai allele. Comparative mapping of this interval revealed a conserved synteny among cereal grasses. HL2 is beneficial to wheat breeding for more kernels per spike at a lower spikelet density, which is a favored morphological trait for Fusarium head blight resistance.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Quantitative Trait Loci , Seeds/genetics , Triticum/genetics , Haplotypes , Quantitative Trait, Heritable , Seeds/growth & development , Triticum/growth & development
2.
Planta ; 247(5): 1089-1098, 2018 May.
Article in English | MEDLINE | ID: mdl-29353419

ABSTRACT

MAIN CONCLUSION: Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains m-2, grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of today's free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat 'Forno' × European spelt 'Oberkulmer' recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains m-2, grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains m-2, and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy.


Subject(s)
Edible Grain/genetics , Triticum/genetics , Alleles , Chromosome Mapping , Crop Production , Edible Grain/anatomy & histology , Edible Grain/growth & development , Genes, Plant/physiology , Genetic Pleiotropy/genetics , Quantitative Trait Loci/genetics , Triticum/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...