Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 905: 167200, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742976

ABSTRACT

Carbon black (CB), a component of environmental particulate pollution derived from carbon sources, poses a significant threat to human health, particularly in the context of lung-related disease. This study aimed to investigate the detrimental effects of aggregated CB in the average micron scale on lung tissues and cells in vitro and in vivo. We observed that CB particles induced lung disorders characterized by enhanced expression of inflammation, necrosis, and fibrosis-related factors in vivo. In alveolar epithelial cells, CB exposure resulted in decreased cell viability, induction of cell death, and generation of reactive oxidative species, along with altered expression of proteins associated with lung disorders. Our findings suggested that the damaging effects of CB on the lung involved the targeting of lysosomes. Specifically, CB promoted lysosomal membrane permeabilization, while lysosomal alkalization mitigated the harmfulness of CB on lung cells. Additionally, we explored the protective effects of alkaloids derived from Nelumbinis plumula, with a focus on neferine, against CB-induced lung disorders. In conclusion, these findings contribute to a deeper understanding of the pathophysiological effects of CB particles on the lungs and propose a potential therapeutic approach for pollution-related diseases.


Subject(s)
Lung , Soot , Humans , Soot/toxicity , Inflammation , Lysosomes , Carbon/metabolism
2.
Water Res ; 243: 120341, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37625213

ABSTRACT

This study investigated the mechanisms of forming reactive species to degrade micropollutants through the activation of peroxymonosulfate (PMS) by phosphate, a prevalent ion in wastewater. Considering the density functional theory results, the formation of hydrogen bonds between phosphate and PMS molecules might be the crucial step in the overall reactions, which prefers producing ⋅OH and reactive phosphate species (RPS, namely H2PO4⋅, HPO4⋅-, and PO4⋅2-) to yielding SO4⋅-. Besides, in the phosphate (5 mM)/PMS system at pH = 8, HPO4⋅- was modeled to be the dominant radical with a steady-state concentration of 3.6 × 10-12 M, which was 666 and 773 times higher than those of ⋅OH and SO4⋅-. The contributions of 1O2, ⋅OH, SO4⋅-, and RPS to the micropollutant decomposition in phosphate/PMS were studied, and RPS were found to be selective for micropollutants with electron-donating moieties (such as phenolic and aniline groups). Additionally, the degradation pathways of bisphenol A, diclofenac, ibuprofen, and atrazine in phosphate/PMS were proposed according to the detected transformation products. Cytotoxicity analysis was carried out to evaluate the potential environmental impacts resulting from the degradation of micropollutants by phosphate/PMS. This study confirmed the significance of RPS for micropollutant degradation during PMS-based treatment in phosphate-rich scenarios.


Subject(s)
Atrazine , Phosphates , Wastewater , Diclofenac
3.
Chem Eng J ; 4052021 Feb 01.
Article in English | MEDLINE | ID: mdl-33424420

ABSTRACT

Metal-free electrocatalysts have been widely used as cathodes for the reduction of hexavalent chromium [Cr(VI)] in microbial fuel cells (MFCs). The electrocatalytic activity of such system needs to be increased due to the low anodic potential provided by bacteria. In this study, graphite paper (GP) was treated by liquid nitrogen to form three-dimensional graphite foam (3DGF), improving the Cr(VI) reduction by 17% and the total Cr removal by 81% at 30 h in MFCs. X-ray absorption spectroscopy confirmed the Cr(VI) reduction product as Cr(OH)3. Through the spectroscopy characterizations, electrochemical measurements, and density functional theory calculations, the porous structures, edges, and O-doped defects on the 3DGF surface resulted in a higher electroconducting rate and a lower mass transfer rate, which provide more active sites for the Cr(VI) reduction. Additionally, the scrolled graphene-like carbon nanosheets and porous structures on the 3DGF surface might limit the OH- diffusion and result in a high local pH, which accelerated the Cr(OH)3 formation. The results of this study are expected to provide a simple method to manipulate the carbon materials and insights into mechanisms of Cr(VI) reduction in MFCs by the 3DGF with in situ exfoliated edges and O-functionalized graphene.

4.
ChemSusChem ; 11(14): 2382-2387, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29809320

ABSTRACT

CO2 reduction has drawn increasing attention owing to the concern of global warming. Water splitting-biosynthetic hybrid systems are novel and efficient approaches for CO2 conversion. Intimate coupling of electrocatalysts and biosynthesis requires the catalysts possess both high catalytic performance and excellent biocompatibility, which is a bottleneck of developing such catalysts. Here, a complex of Ni nanoparticles embedded in N-doped carbon nanotubes (Ni@N-C) is synthesized as a hydrogen evolution reaction electrocatalyst and is coupled with a hydrogen oxidizing autotroph, Cupriavidus necator H16, to convert CO2 to poly-ß-hydroxybutyrate. In Ni@N-C, the Ni nanoparticles are encapsulated in N-C nanotubes, which prevents bacteria from direct contact with Ni and inhibits Ni2+ leaching. As a result, Ni@N-C exhibits excellent biocompatibility and stability. This work demonstrates that electrocatalysts and biosynthesis can be intimately coupled through rational catalyst design.

SELECTION OF CITATIONS
SEARCH DETAIL
...