Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202405873, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709722

ABSTRACT

The selectivity of multicarbon products in the CO2 reduction reaction (CO2RR) depends on the spin alignment of neighboring active sites, which requires a spin catalyst that facilitates electron transfer with antiparallel spins for enhanced C-C coupling. Here, we design a radical-contained spin catalyst (TEMPOL@HKUST-1) to enhance CO2-to-ethylene conversion, in which spin-disordered (SDO) and spin-ordered (SO) phases co-exist to construct an asymmetric spin configuration of neighboring active sites. The replacement of axially coordinated H2O molecules with TEMPOL radicals introduces spin-spin interactions among the Cu(II) centers to form localized SO phases within the original H2O-mediated SDO phases. Therefore, TEMPOL@HKUST-1 derived catalyst exhibited an approximately two-fold enhancement in ethylene selectivity during the CO2RR at -1.8 V versus Ag/AgCl compared to pristine HKUST-1. In situ ATR-SEIRAS spectra indicate that the spin configuration at asymmetric SO/SDO sites significantly reduces the kinetic barrier for *CO intermediate dimerization toward the ethylene product. The performance of the spin catalyst is further improved by spin alignment under a magnetic field, resulting in a maximum ethylene selectivity of more than 50%. The exploration of the spin-polarized kinetics of the CO2RR provides a promising path for the development of novel spin electrocatalysts with superior performance.

2.
Angew Chem Int Ed Engl ; 63(23): e202402215, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38581164

ABSTRACT

The development of a methodology for synthesizing value-added urea (CO(NH2)2) via a renewable electricity-driven C-N coupling reaction under mild conditions is highly anticipated. However, the complex catalytic active sites that act on the carbon and nitrogen species make the reaction mechanism unclear, resulting in a low efficiency of C-N coupling from the co-reduction of carbon dioxide (CO2) and nitrate (NO3 -). Herein, we propose a novel tandem catalyst of Mo-PCN-222(Co), in which the Mo sites serve to facilitate nitrate reduction to the *NH2 intermediate, while the Co sites enhance CO2 reduction to carbonic oxide (CO), thus synergistically promoting C-N coupling. The synthesized Mo-PCN-222(Co) catalyst exhibited a noteworthy urea yield rate of 844.11 mg h-1 g-1, alongside a corresponding Faradaic efficiency of 33.90 % at -0.4 V vs. reversible hydrogen electrode (RHE). By combining in situ spectroscopic techniques with density functional theory calculations, we demonstrate that efficient C-N coupling is attributed to a tandem system in which the *NH2 and *CO intermediates produced by the Mo and Co active sites of Mo-PCN-222(Co) stabilize the formation of the *CONH2 intermediate. This study provides an effective avenue for the design and synthesis of tandem catalysts for electrocatalytic urea synthesis.

3.
Chem Soc Rev ; 53(10): 5014-5053, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38600823

ABSTRACT

Alumina materials, as one of the cornerstones of the modern chemical industry, possess physical and chemical properties that include excellent mechanical strength and structure stability, which also make them highly suitable as catalyst supports. Alumina-supported Pd-based catalysts with the advantages of exceptional catalytic performance, flexible regulated surface metal/acid sites, and good regeneration ability have been widely used in many traditional chemical industry fields and have also shown great application prospects in emerging fields. This review aims to provide an overview of the recent advances in alumina and its supported Pd-based catalysts. Specifically, the synthesis strategies, morphology transformation mechanisms, and structural properties of alumina with various morphologies are comprehensively summarized and discussed in-depth. Then, the preparation approaches of Pd/Al2O3 catalysts (impregnation, precipitation, and other emerging methods), as well as the metal-support interactions (MSIs), are revisited. Moreover, Some promising applications have been chosen as representative reactions in fine chemicals, environmental purification, and sustainable development fields to highlight the universal functionality of the alumina-supported Pd-based catalysts. The role of the Pd species, alumina support, promoters, and metal-support interactions in the enhancement of catalytic performance are also discussed. Finally, some challenges and upcoming opportunities in the academic and industrial application of the alumina and its supported Pd-based are presented and put forward.

4.
Angew Chem Int Ed Engl ; : e202402882, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594208

ABSTRACT

Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.

5.
Small ; : e2310226, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308112

ABSTRACT

Organic afterglow materials have significant applications in information security and flexible electronic devices with unique optical properties. It is vital but challenging to develop organic afterglow materials possessing controlled output with multi-stimuli-responsive capacity. Herein, dimethyl terephthalate (DTT) is introduced as a strong proton acceptor. The migration direction of N─H protons on two compounds Hs can be regulated by altering the excitation wavelength (Ex) or amine stimulation, thereby achieving dual-stimuli-responsive afterglow emission. When the Ex is below 300 nm, protons migrate to S1-2 DTT , where strong interactions induce phosphorescent emission of Hs, resulting in afterglow behavior. Conversely, when the Ex is above 300 nm, protons interact with the S0 DTT weakly and the afterglow disappears. In view of amine-based compounds with higher proton accepting capabilities, it can snatch proton from S1-2 DTT and redirect the proton flow toward amine, effectively suppressing the afterglow but obtaining a new redshifted fluorescence emission with Δλ over 200 nm due to the high polarity of amine. Moreover, it is successfully demonstrated that the applications of dual-stimuli-responsive organic afterglow materials in information encryption based on the systematic excitation-wavelength-dependent (Ex-De) behavior and amine selectivity detection.

6.
Angew Chem Int Ed Engl ; 63(12): e202400089, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38270907

ABSTRACT

Metal-organic phosphorescent complexes containing Ir or Pt are work horse in organic light-emitting diode (OLED) technology, which can harvest both singlet and triplet excitons in electroluminescence (EL) owing to strong heavy-atom effect. Recently, organic room-temperature phosphorescence (ORTP) have achieved high photoluminescence quantum yield (PLQY) in rigid crystalline state, which, however, is unsuitable for OLED fabrication, therefore leading to an EL efficiency far low behind those of metal-organic phosphorescent complexes. Here, we reported a luminescence mechanism switch from thermally activated delayed fluorescence (TADF) in single crystal microwires to ORTP in amorphous thin-films, based on a tert-butylcarbazole difluoroboron ß-diketonate derivative of DtCzBF2. Tightly packed and well-faceted single-crystal microwires exhibit aggregation induced emission (AIE), enabling TADF microlasers at 473 nm with an optical gain coefficient as high as 852 cm-1 . In contrast, loosely packed dimers of DtCzBF2 formed in guest-host amorphous thin-films decrease the oscillator strength of fluorescence transition but stabilize triplets for ORTP with a PLQY up to 61 %, leading to solution-processed OLEDs with EQE approaching 20 %. This study opens possibilities of low-cost ORTP emitters for high performance OLEDs and future low-threshold electrically injected organic semiconductor lasers (OSLs).

7.
Adv Mater ; 35(52): e2305260, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37754067

ABSTRACT

Spin-polarized lasers, arising from stimulated emission of imbalanced spin populations, play a vital role in spin-optoelectronics. It is usually tackled by external spin injection, inevitably suffering from additional losses across the barriers from injection sources to gain materials. Herein, spin-polarized coherent light emission is self-triggered from the 1D-anchoring-3D perovskites, where the imbalanced populations in achiral 3D perovskites are endowed with the spin selectivity of exciton chirality (EC) underpinned by chiral 1D perovskites. Efficient transfer of EC is enabled by rapid energy transfer, thereby creating an imbalance of the spin population of excited states. Stimulated emission of such populations brings self-triggered spin-polarized amplified spontaneous emission in the composite perovskites, yielding a higher degree of polarization (DOP) than that based on optical spin injection into bare achiral 3D perovskites. Chemical diversity of composite perovskites not only enables to adjust band gap for broadband output of spin-polarized light signals but also promises to manipulate radiative decay and spin relaxation toward remarkably increased DOP. These results highlight the importance of EC transfer mechanism for spin-polarized lasing and represent a crucial step toward the development of chiral-spintronics.

8.
Angew Chem Int Ed Engl ; 62(40): e202309386, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37587321

ABSTRACT

Stimulated Raman scattering offers an alternative strategy to explore continuous-wave (c.w.) organic lasers, which, however, still suffers from the limitation of inadequate Raman gain in organic material systems. Here we propose a metal-linking approach to enhance the Raman gain of organic molecules. Self-assembled microcrystals of the metal linked organic dimers exhibit large Raman gain, therefore allowing for c.w. Raman lasing. Furthermore, broadband tunable Raman lasing is achieved in the organic dimer microcrystals by adjusting excitation wavelengths. This work advances the understanding of Raman gain in organic molecules, paving a way for the design of c.w. organic lasers.

9.
Chem Sci ; 14(33): 8723-8742, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37621424

ABSTRACT

Hierarchical self-assembly of organic molecules or assemblies is of great importance for organic photonics to move from fundamental research to integrated and practical applications. Magnetic fields with the advantages of high controllability, non-contact manipulation, and instantaneous response have emerged as an elegant way to prepare organic hierarchical nanostructures. In this perspective, we outline the development history of organic photonic materials and highlight the importance of organic hierarchical nanostructures for a wide range of applications, including microlasers, optical displays, information encoding, sensing, and beyond. Then, we will discuss recent advances in magnetically controlled assembly for creating organic hierarchical nanostructures, with a particular focus on their potential for enabling the development of integrated photonic devices with unprecedented functionality and performance. Finally, we present several perspectives on the further development of magnetically controlled assembly strategies from the perspective of performance optimization and functional design of organic integrated photonics.

10.
Sci Adv ; 9(33): eadi0214, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37585530

ABSTRACT

Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh­[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.

11.
Angew Chem Int Ed Engl ; 62(35): e202309073, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37427886

ABSTRACT

Macroscopic compass-like magnetic alignment at low magnetic fields is natural for ferromagnetic materials but is seldomly observed in paramagnetic materials. Herein, we report a "paramagnetic compass" that magnetically aligns under ∼mT fields based on the single-crystalline framework constructed by lanthanide ions and organic ligands (Ln-MOF). The magnetic alignment is attributed to the Ln-MOF's strong macroscopic anisotropy, where the highly-ordered structure allows the Ln-ions' molecular anisotropy to be summed according to the crystal symmetry. In tetragonal Ln-MOFs, the alignment is either parallel or perpendicular to the field depending on the easiest axis of the molecular anisotropy. Reversible switching between the two alignments is realized upon the removal and re-adsorption of solvent molecules filled in the framework. When the crystal symmetry is lowered in monoclinic Ln-MOFs, the alignments become even inclined (47°-66°) to the field. These fascinating properties of Ln-MOFs would encourage further explorations of framework materials containing paramagnetic centers.

12.
J Am Chem Soc ; 145(24): 13392-13399, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289031

ABSTRACT

The design and construction of organic afterglow materials is an attractive but formidably challenging task due to the low intersystem crossing efficiency and nonradiative decay. Here, we developed a host surface-induced strategy to achieve excitation wavelength-dependent (Ex-De) afterglow emission through a facile dropping process. The prepared PCz@dimethyl terephthalate (DTT)@paper system exhibits a room-temperature phosphorescence afterglow, with the lifetime up to 1077.1 ± 15 ms and duration time exceeding 6 s under ambient conditions. Furthermore, we can switch the afterglow emission on and off by adjusting the excitation wavelength below or above 300 nm, showing a remarkable Ex-De behavior. Spectral analysis demonstrated that the afterglow originates from the phosphorescence of PCz@DTT assemblies. The stepwise preparation process and detailed experiments (XRD, 1H NMR, and FT-IR analysis) proved the presence of strong intermolecular interactions between the carbonyl groups on the surface of DTT and the entire frame of PCz, which can inhibit the nonradiative processes of PCz to achieve afterglow emission. Theoretical calculations further manifested that DTT geometry alteration under different excitation beams is the main reason for the Ex-De afterglow. This work discloses an effective strategy for constructing smart Ex-De afterglow systems that can be fully exploited in a range of fields.

13.
Nanomicro Lett ; 15(1): 158, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37341868

ABSTRACT

The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal-organic frameworks: CuIII-HHTP and CuII-HHTP. CuIII-HHTP exhibits an improved urea production rate of 7.78 mmol h-1 g-1 and an enhanced Faradaic efficiency of 23.09% at - 0.6 V vs. reversible hydrogen electrode, in sharp contrast to CuII-HHTP. Isolated CuIII species with S = 0 spin ground state are demonstrated as the active center in CuIII-HHTP, different from CuII with S = 1/2 in CuII-HHTP. We further demonstrate that isolated CuIII with an empty [Formula: see text] orbital in CuIII-HHTP experiences a single-electron migration path with a lower energy barrier in the C-N coupling process, while CuII with a single-spin state ([Formula: see text]) in CuII-HHTP undergoes a two-electron migration pathway.

14.
J Phys Chem Lett ; 14(18): 4233-4240, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37126526

ABSTRACT

Singlet fission (SF) presents an attractive solution to overcome the Shockley-Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state 1(T1T1). Despite significant advancement on 1(T1T1) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear. Here, we study an unconventional SF system with excited-state aromaticity, i.e., cyano-substituted dipyrrolonaphtheridinedione derivative (DPND-CN), using time-resolved spectroscopy as a function of the temperature. We demonstrate that the population transfer from S1 to 1(T1T1) is driven by a time-dependent exothermicity resulting from the coherent coupling between electronic and spin degrees of freedom. This is followed by thermal-activated dissociation of 1(T1T1) to yield free triplets. Our results provide some new insight into the SF mechanism, which may guide the development of new efficient and stable SF materials for practical applications.

15.
J Am Chem Soc ; 145(22): 12360-12369, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37226400

ABSTRACT

Hybrid metal halides (HMHs) are a class of materials that combine extraordinary photophysical properties and excellent processability. Their chemical variability allows for the solid-liquid transition toward melt-processable HMHs. Herein, we report the design and synthesis of zero-dimensional HMHs [M(DMSO)6][SbCl6], where the isolated octahedra of [M(DMSO)6]3+ and [SbCl6]3- are alternatively aligned in the crystal structure. The luminescent center of [SbCl6]3- enables the photogeneration of self-trapped excitons, resulting in broadband photoluminescence with a large Stokes shift and a nearly 100% quantum yield. Meanwhile, the release of DMSO ligands from [M(DMSO)6]3+ is controlled by the M-O coordination and thus a low melting point of ∼90 °C is achieved for HMHs. Interestingly, the glass phase is obtained by melt quenching, with a sharp change in photoluminescence colors compared to the crystal phase of melt-processable HMHs. The robust crystal-liquid-glass transition opens a new avenue to tailoring structural disorder and optoelectronic performance in organic-inorganic materials.

16.
Natl Sci Rev ; 10(3): nwac197, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37035019

ABSTRACT

Why one chemical is more stable than another is not always easy to understand. A unified answer for metal clusters has led to the establishment of the superatom concept, which rationalizes the delocalization of electrons; however, cluster stability based on superatom theory has not been confirmed unambiguously for any metal other than the s- and p-blocks of the periodic table of elements. Here, we have prepared pure niobium clusters and observed their reactions with CO under sufficient gas collision conditions. We find prominent inertness of Nb12 +, which survives CO attack. Comprehensive theoretical calculation results reveal that the inertness of Nb12 + is associated with its cage structure and well-organized superatomic orbitals, giving rise to energetic superiority among the studied clusters. It is revealed that not only the 5s but also the 4d electrons of Nb delocalize in the cluster and significantly contribute to the superatomic state, resulting in reasonable cage aromaticity. This hollow-cage cluster, which we have called a 'niobespherene', provides a clue with regard to designing new materials of all-metal aromaticity and Nb-involved catalysts free of CO poisoning.

17.
Angew Chem Int Ed Engl ; 62(20): e202302160, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36929027

ABSTRACT

The development of circularly polarized electroluminescence (CPEL) is currently hampered by the high difficulty and cost in the syntheses of suitable chiral materials and the notorious chirality diminishment issue in electrical devices. Herein, diastereomeric IrIII and RuII complexes with chiral (±)-camphorsulfonate counteranions are readily synthesized and used as the active materials in circularly polarized light-emitting electrochemical cells to generate promising CPELs. The addition of the chiral ionic liquid (±)-1-butyl-3-methylimidazole camphorsulfonate into the active layer significantly improves the device performance and the electroluminescence dissymmetry factors (≈10-3 ), in stark contrast to the very weak circularly polarized photoluminescence of the spin-coated films of these diastereomeric complexes. Control experiments with enantiopure IrIII complexes suggest that the chiral anions play a dominant role in the electrically-induced amplification of CPELs.

18.
Adv Mater ; 35(17): e2300054, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36744301

ABSTRACT

Synthetic photonic materials exploiting the quantum concept of parity-time (PT) symmetry lead to an emerging photonic paradigm-non-Hermitian photonics, which is revolutionizing the photonic sciences. The non-Hermitian photonics dealing with the interplay between gain and loss in PT synthetic photonic material systems offers a versatile platform for advancing microlaser technology. However, current PT-symmetric microcavity laser systems only manipulate imaginary parts of the refractive indices, suffering from limited laser spectral bandwidth. Here, an organic composite material system is proposed to synthesize reconfigurable PT-symmetric microcavities with controllable complex refractive indices for realizing tunable single-mode laser outputs. A grayscale electron-beam direct-writing technique is elaborately designed to process laser dye-doped polymer films in one single step into microdisk cavities with periodic gain and loss distribution, which enables thresholdless PT-symmetry breaking and single-mode laser operation. Furthermore, organic photoisomerizable compounds are introduced to reconfigure the PT-symmetric systems in real-time by tailoring the real refractive index of the polymer microresonators, allowing for a dynamically and continuously tunable single-mode laser output. This work fundamentally enhances the PT-symmetric photonic systems for innovative design of synthetic photonic materials and architectures.

19.
J Am Chem Soc ; 145(3): 1557-1563, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36630440

ABSTRACT

Integrated electro-optical switches are essential as one of the fundamental elements in the development of modern optoelectronics. As an architecture for photonic systems exciton polaritons, hybrid bosonic quasiparticles that possess unique properties derived from both excitons and photons, have shown much promise. For this system, we demonstrate a significant improvement of emitted intensity and condensation threshold by applying an electric field to a microcavity filled with an organic microbelt. Our theoretical investigations indicate that the electric field makes the excitons dipolar and induces an enhancement of the exciton-polariton interaction and of the polariton lifetime. Based on these electric field-induced changes, a sub-nanosecond electrical field-enhanced polariton condensate switch is realized at room temperature, providing the basis for developing an on-chip integrated photonic device in the strong light-matter coupling regime.

20.
Nat Commun ; 14(1): 31, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36596798

ABSTRACT

Circularly polarized (CP) electroluminescence from organic light-emitting diodes (OLEDs) has aroused considerable attention for their potential in future display and photonic technologies. The development of CP-OLEDs relies largely on chiral-emitters, which not only remain rare owing to difficulties in design and synthesis but also limit the performance of electroluminescence. When the polarization (pseudospin) degrees of freedom of a photon interact with its orbital angular momentum, photonic spin-orbit interaction (SOI) emerges such as Rashba-Dresselhaus (RD) effect. Here, we demonstrate a chiral-emitter-free microcavity CP-OLED with a high dissymmetry factor (gEL) and high luminance by embedding a thin two-dimensional organic single crystal (2D-OSC) between two silver layers which serve as two metallic mirrors forming a microcavity and meanwhile also as two electrodes in an OLED architecture. In the presence of the RD effect, the SOIs in the birefringent 2D-OSC microcavity result in a controllable spin-splitting with CP dispersions. Thanks to the high emission efficiency and high carrier mobility of the OSC, chiral-emitter-free CP-OLEDs have been demonstrated exhibiting a high gEL of 1.1 and a maximum luminance of about 60000 cd/m2, which places our device among the best performing CP-OLEDs. This strategy opens an avenue for practical applications towards on-chip microcavity CP-OLEDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...