Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nutrients ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542719

ABSTRACT

Previous research has found that milk is associated with a decreased risk of colorectal cancer (CRC). However, it is unclear whether the milk digestion by the enzyme lactase-phlorizin hydrolase (LPH) plays a role in CRC susceptibility. Our study aims to investigate the direct causal relationship of CRC risk with LPH levels by applying a two-sample Mendelian Randomization (MR) strategy. Genetic instruments for LPH were derived from the Fenland Study, and CRC-associated summary statistics for these instruments were extracted from the FinnGen Study, PLCO Atlas Project, and Pan-UK Biobank. Primary MR analyses focused on a cis-variant (rs4988235) for LPH levels, with results integrated via meta-analysis. MR analyses using all variants were also undertaken. This analytical approach was further extended to assess CRC subtypes (colon and rectal). Meta-analysis across the three datasets illustrated an inverse association between genetically predicted LPH levels and CRC risk (OR: 0.92 [95% CI, 0.89-0.95]). Subtype analyses revealed associations of elevated LPH levels with reduced risks for both colon (OR: 0.92 [95% CI, 0.89-0.96]) and rectal cancer (OR: 0.92 [95% CI, 0.87, 0.98]). Consistency was observed across varied analytical methods and datasets. Further exploration is warranted to unveil the underlying mechanisms and validate LPH's potential role in CRC prevention.


Subject(s)
Colorectal Neoplasms , Lactase-Phlorizin Hydrolase , Humans , Lactase-Phlorizin Hydrolase/genetics , Mendelian Randomization Analysis , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control
2.
Intensive Care Med ; 49(6): 633-644, 2023 06.
Article in English | MEDLINE | ID: mdl-37178149

ABSTRACT

PURPOSE: Severe traumatic brain injury (TBI) leads to acute coma and may result in prolonged disorder of consciousness (pDOC). We aimed to determine whether right median nerve electrical stimulation is a safe and effective treatment for accelerating emergence from coma after TBI. METHODS: This randomised controlled trial was performed in 22 centres in China. Participants with acute coma at 7-14 days after TBI were randomly assigned (1:1) to either routine therapy and right median nerve electrical stimulation (RMNS group) or routine treatment (control group). The RMNS group received 20 mA, 300 µs, 40 Hz stimulation pulses, lasting 20 s per minutes, 8 h per day, for 2 weeks. The primary outcome was the proportion of patients who regained consciousness 6 months post-injury. The secondary endpoints were Glasgow Coma Scale (GCS), Full Outline of Unresponsiveness scale (FOUR), Coma Recovery Scale-Revised (CRS-R), Disability Rating Scale (DRS) and Glasgow Outcome Scale Extended (GOSE) scores reported as medians on day 28, 3 months and 6 months after injury, and GCS and FOUR scores on day 1 and day 7 during stimulation. Primary analyses were based on the intention-to-treat set. RESULTS: Between March 26, 2016, and October 18, 2020, 329 participants were recruited, of whom 167 were randomised to the RMNS group and 162 to the control group. At 6 months post-injury, a higher proportion of patients in the RMNS group regained consciousness compared with the control group (72.5%, n = 121, 95% confidence interval (CI) 65.2-78.7% vs. 56.8%, n = 92, 95% CI 49.1-64.2%, p = 0.004). GOSE at 3 months and 6 months (5 [interquartile range (IQR) 3-7] vs. 4 [IQR 2-6], p = 0.002; 6 [IQR 3-7] vs. 4 [IQR 2-7], p = 0.0005) and FOUR at 28 days (15 [IQR 13-16] vs. 13 [interquartile range (IQR) 11-16], p = 0.002) were significantly increased in the RMNS group compared with the control group. Trajectory analysis showed that significantly more patients in the RMNS group had faster GCS, CRS-R and DRS improvement (p = 0.01, 0.004 and 0.04, respectively). Adverse events were similar in both groups. No serious adverse events were associated with the stimulation device. CONCLUSION: Right median nerve electrical stimulation is a possible effective treatment for patients with acute traumatic coma, that will require validation in a confirmatory trial.


Subject(s)
Brain Injuries, Traumatic , Coma, Post-Head Injury , Humans , Coma, Post-Head Injury/therapy , Coma/etiology , Coma/therapy , Median Nerve , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Glasgow Coma Scale , Electric Stimulation
3.
Trials ; 24(1): 207, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941714

ABSTRACT

BACKGROUND: Chronic subdural hematomas (CSDHs) are one of the most common neurosurgical conditions. The standard surgical technique includes burr-hole craniostomy, followed by intraoperative irrigation and placement of subdural closed-system drainage. The drainage is generally removed after 48 h, which can be described as fixed-time drainage strategy. According to literature, the recurrence rate is 5-33% with this strategy. In our retrospective study, postoperative hematoma volume was found to significantly increase the risk of recurrence. Based on these results, an exhaustive drainage strategy is conducted to minimize postoperative hematoma volume and achieve a low recurrence rate and good outcomes. METHODS: This is a prospective, multicenter, open-label, blinded endpoint randomized controlled trial designed to include 304 participants over the age of 18-90 years presenting with a symptomatic CSDH verified on cranial computed tomography or magnetic resonance imaging. Participants will be randomly allocated to perform exhaustive drainage (treatment group) or fixed-time drainage (control group) after a one-burr hole craniostomy. The primary endpoint will be recurrence indicating a reoperation within 6 months. DISCUSSION: This study will validate the effect and safety of exhaustive drainage after one-burr hole craniostomy in reducing recurrence rates and provide critical information to improve CSDH surgical management. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04573387. Registered on October 5, 2020.


Subject(s)
Hematoma, Subdural, Chronic , Humans , Adult , Middle Aged , Retrospective Studies , Prospective Studies , Hematoma, Subdural, Chronic/diagnostic imaging , Hematoma, Subdural, Chronic/surgery , Recurrence , Drainage/adverse effects , Drainage/methods , Treatment Outcome , Craniotomy/adverse effects , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
4.
Insects ; 12(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34564218

ABSTRACT

Eucalyptus species have become one of the most commonly planted trees worldwide, including China, due to their fast growth and various commercial applications. However, the productivity of Eucalyptus plantations has been threatened by exotic invasive insect pests in recent years. Among these pests, gall inducers of the genus Ophelimus of the Eulophidae family are among the most important invasive species in Eucalyptus plantations. We report here for the first time the presence of a new invasive Eucalyptus gall wasp, Ophelimus bipolaris sp. n., in Guangzhou, China, which also represents the first species of the genus reported from China. The identity of the new species was confirmed by an integrative approach combing biological, morphological and molecular evidence. The new species is described and illustrated. This wasp induces galls only on the leaf blade surface of four Eucalyptus species: E. grandis, E. grandis × E. urophylla, E. tereticornis and E. urophylla. Our preliminary observation showed that O. bipolaris could complete a life cycle on E. urophylla in approximately 2 months under local climatic conditions (23.5-30 °C). Considering the severe damage it may cause to Eucalyptus production, further investigations of its biology and control are urgently needed in China.

5.
Free Radic Biol Med ; 130: 215-233, 2019 01.
Article in English | MEDLINE | ID: mdl-30315933

ABSTRACT

Melatonin is a neurohormone associated with sleep and wakefulness and is mainly produced by the pineal gland. Numerous physiological functions of melatonin have been demonstrated including anti-inflammation, suppressing neoplastic growth, circadian and endocrine rhythm regulation, and its potent antioxidant activity as well as its role in regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others. In this review, we summarize the recent advances related to the multiple protective roles of melatonin receptor agonists, melatonin and N-acetylserotonin (NAS), in brain injury, liver damage, and bone health. Brain injury, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and newborn perinatal hypoxia-ischemia encephalopathy, is a major cause of mortality and disability. Liver disease causes serious public health problems and various factors including alcohol, chemical pollutants, and drugs induce hepatic damage. Osteoporosis is the most common bone disease in humans. Due in part to an aging population, both the cost of care of fracture patients and the annual fracture rate have increased steadily. Despite the discrepancy in the pathophysiological processes of these disorders, time frames and severity, they may share several common molecular mechanisms. Oxidative stress is considered to be a critical factor in these pathogeneses. We update the current state of knowledge related to the molecular processes, mainly including anti-oxidative stress, anti-apoptosis, autophagy dysfunction, and anti-inflammation as well as other properties of melatonin and NAS. Particularly, the abilities of melatonin and NAS to directly scavenge oxygen-centered radicals and toxic reactive oxygen species, and indirectly act through antioxidant enzymes are disscussed. In this review, we summarize the similarities and differences in the protection provided by melatonin and/or NAS in brain, liver and bone damage. We analyze the involvement of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2), and melatonin receptor 1C (MT3) in the protection of melatonin and/or NAS. Additionally, we evaluate their potential clinical applications. The multiple mechanisms of action and multiple organ-targeted properties of melatonin and NAS may contribute to development of promising therapies for clinical trials.


Subject(s)
Brain Injuries/metabolism , Liver Diseases/metabolism , Melatonin/metabolism , Neuroprotective Agents/pharmacology , Osteoporosis/metabolism , Serotonin/analogs & derivatives , Sleep/physiology , Animals , Brain Injuries/drug therapy , Humans , Liver Diseases/drug therapy , Osteoporosis/drug therapy , Oxidative Stress , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Receptors, Melatonin/metabolism , Regeneration , Serotonin/metabolism
6.
J Neurotrauma ; 36(7): 1168-1174, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30215286

ABSTRACT

A prospective observational study collected temperature data from 51 patients in 11 neurosurgical centers and follow-up outcome information at 6 months in 49 patients. Brain temperature (Tbr) was measured directly by an intraventricular temperature sensor. Axillary temperature (Tax) and rectal temperature (Tre) were measured by electric thermometers. Tbr was 0.4 to 1.5°C higher than body temperature. Tre correlated well with the Tbr (coefficient: 0.7378; p < 0.05). Among all patients, Glasgow Coma Scale (GCS) scores on admission were significantly lower in the patients with post-operatively extreme peak temperature (Tpeak, < 37°C or >39°C in first 24 h) and major temperature variation (Tvari > 1°C in first 12 h; p < 0.05, p < 0.01, respectively). Among the patients with no temperature intervention, the extreme Tpeak group showed a lower Glasgow Outcome Scale-Extended (GOS-E) score at 6 months (p < 0.05) with lower GCS scores on admission (p < 0.01), compared with the moderate Tpeak group. Remarkably, the major Tvari group showed significantly lower GOS-E scores (p < 0.05) with the same GCS scores as the minor Tvari group. Thus, Tre is the better candidate to estimate Tbr. Spontaneously extreme Tpeak in TBI represents both more serious injury on admission and worse prognosis, and Tvari might be used as a novel prognostic parameter in TBI. Brain temperature is therefore one of the critical indicators evaluating injury severity, prognostication, and monitoring in the management of TBI. This prospective observational study has been registered in ClinicalTrials.gov ( https://clinicaltrials.gov ), and the registration number is NCT03068143.


Subject(s)
Body Temperature/physiology , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/therapy , Brain/physiopathology , Adult , Aged , Female , Glasgow Coma Scale , Glasgow Outcome Scale , Humans , Hypothermia, Induced , Male , Middle Aged , Prognosis , Prospective Studies
8.
Drug Discov Today ; 20(11): 1372-81, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26360053

ABSTRACT

Hypoxic-ischemic (H-I) brain injury in newborns is a major cause of morbidity and mortality that claims thousands of lives each year. In this review, we summarize the promising neuroprotective agents tested on animal models and pilot clinical studies of neonatal H-I brain injury according to the different phases of the disease. These agents target various phases of injury including the early phase of excitotoxicity, oxidative stress and apoptosis as well as late-phase inflammatory reaction and neural repair. We analyze the cell survival and cell death pathways modified by these agents in neonatal H-I brain injury. We aim to 'build a bridge' between animal trials of neuroprotective agents and potential candidate treatments for future clinical applications against H-I encephalopathy.


Subject(s)
Drug Design , Hypoxia-Ischemia, Brain/prevention & control , Neuroprotective Agents/pharmacology , Animals , Apoptosis/drug effects , Cell Death/drug effects , Cell Survival/drug effects , Disease Models, Animal , Humans , Hypoxia-Ischemia, Brain/physiopathology , Infant, Newborn , Oxidative Stress/drug effects
9.
Int J Neuropsychopharmacol ; 18(2)2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25522411

ABSTRACT

BACKGROUND: Repeated alcohol exposure is known to increase subsequent ethanol consumption in mice. However, the underlying mechanisms have not been fully elucidated. One postulated mechanism involves epigenetic modifications, including histone modifications and DNA methylation of relevant genes such as NR2B or BDNF. METHODS: To investigate the role of epigenetic mechanisms in the development of alcohol drinking behavior, an established chronic intermittent ethanol exposure reinforced ethanol drinking mouse model with vapor inhalation over two 9-day treatment regimens was used. The DNA methyltransferase inhibitor, 5-azacytidine or the histone deacetylase inhibitor, Trichostatin A was administered (intraperitoneally) to C57BL/6 mice 30 min before daily exposure to chronic intermittent ethanol. Changes in ethanol consumption were measured using the 2-bottle choice test. RESULTS: The results indicated that systemic administration of Trichostatin A (2.5 µg/g) facilitated chronic intermittent ethanol-induced ethanol drinking, but systemic administration of 5-azacytidine (2 µg/g) did not cause the same effect. However, when 5-azacytidine was administered by intracerebroventricular injection, it facilitated chronic intermittent ethanol-induced ethanol drinking. Furthermore, the increased drinking caused by chronic intermittent ethanol was prevented by injection of a methyl donor, S-adenosyl-L-methionine. To provide evidence that chronic intermittent ethanol- or Trichostatin A-induced DNA demethylation and histone modifications of the NR2B promoter may underlie the altered ethanol consumption, we examined epigenetic modifications and NR2B expression in the prefrontal cortex of these mice. Chronic intermittent ethanol or Trichostatin A decreased DNA methylation and increased histone acetylation in the NR2B gene promoter, as well as mRNA levels of NR2B in these mice. CONCLUSIONS: Taken together, these results indicate that epigenetic modifications are involved in regulating ethanol drinking behavior, partially through altering NR2B expression.


Subject(s)
Alcohol Drinking/genetics , Epigenesis, Genetic , Acetylation/drug effects , Alcohol Drinking/physiopathology , Animals , Azacitidine/pharmacology , Central Nervous System Depressants/administration & dosage , DNA Methylation/drug effects , DNA Modification Methylases/antagonists & inhibitors , DNA Modification Methylases/metabolism , Ethanol/administration & dosage , Histone Deacetylase Inhibitors/pharmacology , Histones/drug effects , Histones/metabolism , Hydroxamic Acids/pharmacology , Male , Mice, Inbred C57BL , Prefrontal Cortex/physiopathology , Promoter Regions, Genetic/drug effects , RNA, Messenger , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
10.
Neurosci Lett ; 535: 24-9, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23295906

ABSTRACT

Although neurotrophic factors have long been recognized as potent agents for protecting against neuronal degeneration, clinical success in treating Parkinson's disease and other neurodegenerative disorders has been hindered by difficulties in delivery of trophic factors across the blood brain barrier (BBB). Bone marrow hematopoietic stem cell-based gene therapy is emerging as a promising tool for overcoming drug delivery problems, as myeloid cells can cross the BBB and are recruited in large numbers to sites of neurodegeneration, where they become activated microglia that can secrete trophic factors. We tested the efficacy of bone marrow-derived microglial delivery of neurturin (NTN) in protecting dopaminergic neurons against neurotoxin-induced death in mice. Bone marrow cells were transduced ex vivo with lentivirus expressing the NTN gene driven by a synthetic macrophage-specific promoter. Infected bone marrow cells were then collected and transplanted into recipient animals. Eight weeks after transplantation, the mice were injected with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropuridine (MPTP) for seven days to induce dopaminergic neurodegeneration. Microglia-mediated NTN delivery dramatically ameliorated MPTP-induced degeneration of tyrosine hydroxylase (TH)-positive neurons of the substantia nigra and their terminals in the striatum. Microglia-mediated NTN delivery also induced significant recovery of synaptic marker staining in the striatum of MPTP-treated animals. Functionally, NTN treatment restored MPTP-induced decline in general activity, rearing behavior, and food intake. Thus, bone marrow-derived microglia can serve as cellular vehicles for sustained delivery of neurotrophic factors capable of mitigating dopaminergic injury.


Subject(s)
Bone Marrow Cells/metabolism , Brain/pathology , Dopaminergic Neurons/pathology , Microglia/metabolism , Nerve Degeneration/prevention & control , Neurturin/metabolism , Parkinson Disease/prevention & control , Animals , Bone Marrow Transplantation , Brain/metabolism , Genetic Therapy , Lentivirus/genetics , Male , Maze Learning , Mice , Mice, Inbred C57BL , Microglia/transplantation , Motor Activity , Nerve Degeneration/genetics , Nerve Degeneration/physiopathology , Neurturin/genetics , Parkinson Disease/genetics , Parkinson Disease/physiopathology
11.
Zookeys ; (87): 11-7, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21594099

ABSTRACT

Rhadinoscelidia delta Liu, Yao & Xu, sp. n. (Chrysididae, Loboscelidiinae) is described and illustrated based on two female specimens from Hainan province. It represents the first record of the genus Rhadinoscelidia Kimsey, 1988 for China. A key to the world species of this genus is given. All specimens are preserved in the Hymenopteran Collection, South China Agricultural University (SCAU).

SELECTION OF CITATIONS
SEARCH DETAIL
...