Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 107: 117760, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38762978

ABSTRACT

Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.


Subject(s)
Antineoplastic Agents , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Cell Movement/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Hemolysis/drug effects , Oligopeptides
2.
J Med Chem ; 67(5): 3885-3908, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38278140

ABSTRACT

Oncolytic peptides represent promising novel candidates for anticancer treatments. In our efforts to develop oncolytic peptides possessing both high protease stability and durable anticancer efficiency, three rounds of optimization were conducted on the first-in-class oncolytic peptide LTX-315. The robust synthetic method, in vitro and in vivo anticancer activity, and anticancer mechanism were investigated. The D-type peptides represented by FXY-12 possessed significantly improved proteolytic stability and sustained anticancer efficiency. Strikingly, the novel hybrid peptide FXY-30, containing one FXY-12 and two camptothecin moieties, exhibited the most potent in vitro and in vivo anticancer activities. The mechanism explorations indicated that FXY-30 exhibited rapid membranolytic effects and induced severe DNA double-strand breaks to trigger cell apoptosis. Collectively, this study not only established robust strategies to improve the stability and anticancer potential of oncolytic peptides but also provided valuable references for the future development of D-type peptides-based hybrid anticancer chemotherapeutics.


Subject(s)
Antineoplastic Agents , Antineoplastic Agents/pharmacology , Oligopeptides/pharmacology , Peptides/pharmacology , Apoptosis , Peptide Hydrolases , Cell Line, Tumor
3.
Bioorg Chem ; 138: 106674, 2023 09.
Article in English | MEDLINE | ID: mdl-37331169

ABSTRACT

Nitrogen mustards (NMs) are an important class of chemotherapeutic drugs and have been widely employed for the treatment of various cancers. However, due to the high reactivity of nitrogen mustard, most NMs react with proteins and phospholipids within the cell membrane. Therefore, only a very small fraction of NMs can reach the reach nucleus, alkylating and cross-linking DNA. To efficiently penetrate the cell membrane barrier, the hybridization of NMs with a membranolytic agent may be an effective strategy. Herein, the chlorambucil (CLB, a kind of NM) hybrids were first designed by conjugation with membranolytic peptide LTX-315. However, although LTX-315 could help large amounts of CLB penetrate the cytomembrane and enter the cytoplasm, CLB still did not readily reach the nucleus. Our previous work demonstrated that the hybrid peptide NTP-385 obtained by covalent conjugation of rhodamine B with LTX-315 could accumulate in the nucleus. Hence, the NTP-385-CLB conjugate, named FXY-3, was then designed and systematically evaluated both in vitro and in vivo. FXY-3 displayed prominent localization in the cancer cell nucleus and induced severe DNA double-strand breaks (DSBs) to trigger cell apoptosis. Especially, compared with CLB and LTX-315, FXY-3 exhibited significantly increased in vitro cytotoxicity against a panel of cancer cell lines. Moreover, FXY-3 showed superior in vivo anticancer efficiency in the mouse cancer model. Collectively, this study established an effective strategy to increase the anticancer activity and the nuclear accumulation of NMs, which will provide a valuable reference for future nucleus-targeting modification of nitrogen mustards.


Subject(s)
Neoplasms , Nitrogen Mustard Compounds , Animals , Mice , Chlorambucil/pharmacology , DNA/metabolism , Nitrogen , Nitrogen Mustard Compounds/pharmacology , Peptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...