Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 10(5): 2827-2840, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38690985

ABSTRACT

Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.


Subject(s)
Fibroins , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Porosity , Animals , Humans , Fibroins/chemistry , Bombyx , Biocompatible Materials/chemistry , Silk/chemistry
2.
J Mater Chem B ; 11(34): 8281-8290, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37584321

ABSTRACT

Graft-host integration after the anterior cruciate ligament (ACL) reconstruction sequentially follows the prognosis from the inflammation period to the regeneration period. However, due to insufficient bioactivity, polyethylene terephthalate (PET) artificial ligaments often require a long period for graft-host integration. To improve graft-host integration, sequential therapy targeting multifactor is widely advocated. In this study, a multilayer regenerated silk fibroin (RSF) coating loaded with heparin and bone morphogenetic protein binding peptide (BBP) for differentiated release was introduced on the surface of the PET artificial ligament by a stepwise deposition method. The drug release profiles of heparin and BBP on the coated PET artificial ligament indicated the features of differential drug release, i.e., with heparin in the outermost layer releasing a significant amount (more than 60%) during the first 5 days while BBP in the inner layer only releasing a small amount (ca. 30%) within 1 week without burst release. Based on the isometric ACL reconstruction model of rabbits, such drug-loaded RSF coating was verified to be able to modulate the early inflammatory response and promote the maturation of the graft in the articular cavity, meanwhile, it provided a continuous and stable signal of osteogenic induction to improve graft-bone integration. Thus, sequential intervention with heparin and BBP proved to be a reliable combination, and multifunctional RSF-coated PET artificial ligaments hold great potential for improving the clinical efficacy of ACL reconstruction.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Fibroins , Animals , Rabbits , Fibroins/pharmacology , Osteogenesis , Polyethylene Terephthalates/pharmacology , Coated Materials, Biocompatible/pharmacology , Ligaments , Anterior Cruciate Ligament Reconstruction/methods , Anti-Inflammatory Agents/pharmacology
3.
ACS Biomater Sci Eng ; 9(7): 4168-4177, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37353513

ABSTRACT

Hydrogels are considered to be ideal biomedical materials as their physical properties are similar to the physiological tissue environment. In particular, thixotropic hydrogels have received increasing attention from researchers because of their injectability. Herein, a simple and rapid method was developed for the preparation of a regenerated silk fibroin (RSF) hydrogel with long-lasting and excellent thixotropy. The thixotropic RSF hydrogel was readily formed by ultrasonic treatment of the pretreated RSF solution for 2 min followed by incubation at 40 °C for 10 min. The storage modulus of the RSF hydrogels recovered to more than 90% of the original value within 20 s after withstanding 1000% shear strain. By avoiding complicated chemical or physical treatments and by addition of crosslinking agents and/or other chemical components, the obtained RSF hydrogels maintained excellent biocompatibility. Hence, the cells implanted inside the hydrogel can grow and proliferate normally. By virtue of ultrasonic treatment during the preparation, functional nanoparticles can be uniformly dispersed in the RSF solution to prepare RSF-based hybrid hydrogels with various functions. As an application example, hydroxyapatite (HAP) with osteoinductivity was mixed with RSF solution to prepare the RSF/HAP hybrid hydrogel. The RSF/HAP hybrid hydrogel maintained biocompatibility and thixotropy of the original RSF hydrogel and promoted osteoblastic differentiation of cells owing to the addition of HAP. Therefore, the RSF hydrogel prepared in this work has a strong application prospect in the biomedical field including, but not limited to, bone repair.


Subject(s)
Fibroins , Silk , Hydrogels/chemistry , Biocompatible Materials , Durapatite/pharmacology , Polymers
4.
J Mater Chem B ; 11(20): 4529-4538, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37161762

ABSTRACT

It is a viable strategy to develop a safer and tumor-specific method by considering the tumor microenvironment to optimize the curative effect and reduce the side effects in cancer treatment. In this study, glucose oxidase (GOx) and Fe3O4 nanoparticles were successfully loaded inside regenerated silk fibroin/zein (RSF/zein) nanospheres to obtain dual-loaded Fe3O4/GOx@RSF/zein nanospheres. The unique structure of the RSF/zein nanospheres reported in our previous work was favorable to loading sufficient amounts of GOx and Fe3O4 nanoparticles in the nanospheres. For Fe3O4/GOx@RSF/zein nanospheres, GOx depletes endogenous glucose via an enzyme-catalyzed bioreaction, simultaneously generating plenty of H2O2in situ. It was further catalyzed through a Fe3O4-mediated Fenton reaction to form highly toxic hydroxyl free radicals (˙OH) in the acidic tumor microenvironment. These two successive reactions made up the combination of starvation therapy and chemodynamic therapy during cancer treatment. The catalytic activity of GOx loaded in the RSF/zein nanospheres is similar to that of the pristine enzyme. It was maintained for more than one month due to the protection of the RSF/zein nanospheres. The methylene blue degradation results confirmed the sequential reaction by GOx and Fe3O4 from Fe3O4/GOx@RSF/zein nanospheres. The in vitro experiments demonstrated that the Fe3O4/GOx@RSF/zein nanospheres entered MCF-7 cells and generated ˙OH free radicals. Therefore, these Fe3O4/GOx@RSF/zein nanospheres exhibited a considerable synergistic therapeutic effect. They showed more efficient suppression in cancer cell growth than either single-loaded GOx@RSF/zein or Fe3O4@RSF/zein nanospheres, achieving the design goal for the nanospheres. Therefore, the Fe3O4/GOx@RSF/zein nanospheres cut off the nutrient supply due to the strong glucose dependence of tumor cells and generated highly toxic ˙OH free radicals in tumor cells, effectively enhancing the anticancer effect and minimizing side effects. Therefore, in future clinical applications, the Fe3O4/GOx@RSF/zein nanospheres developed in this study have significant potential for combining starvation and chemodynamic therapy.


Subject(s)
Nanospheres , Neoplasms , Zein , Animals , Plant Proteins , Glucose Oxidase/chemistry , Glucose/metabolism , Neoplasms/drug therapy
5.
J Biomater Appl ; 37(10): 1767-1775, 2023 05.
Article in English | MEDLINE | ID: mdl-37001507

ABSTRACT

Adipose-derived mesenchymal stem cell (Ad-MSC) with capacities of releasing trophic factors and chondrogenic differentiation was a promising candidate for tracheal reconstruction. Silk fibroin (SF)- hydroxyapatite (HA) scaffolds were fabricated by the freeze-drying method. And Ad-MSCs were co-cultured on the scaffolds for 14 days in vitro. The role of the SF-HA scaffold in regulating the adhesion, growth, and proliferation of Ad-MSCs, and its potential mechanisms were investigated. The identity of Ad-MSCs was confirmed by cell morphology, surface markers, and differentiation characteristics. Cell proliferation, viability, and morphology were observed via CCK-8, live/dead assay, and scanning electron microscopy (SEM). Gene mRNA and protein levels were examined using quantitative real-time polymerase chain reaction and western blotting, respectively. SF-HA scaffolds showed excellent properties of promoting Ad-MSCs adhesion, growth, and proliferation for at least 14 days. In the CCK-8 assay, the relative OD value of Ad-MSCs cultured on SF-HA scaffolds increased (p < 0.001). Furthermore, live/dead staining showed that the fluorescent coverage increased with time (p < 0.05). SEM also showed that 3 days after inoculation, the coverage of Ad-MSCs on the SF-HA scaffolds was 78.15%, increased to 92.91% on day 7, and reached a peak of 94.38% on day 14. Extracellular signal-regulated kinase (ERK) mRNA and phosphorylated ERK (pERK) protein expression increased at day 3 (p < 0.05), followed by a significant decline at day 7 (p < 0.05). And ERK mRNA expression was positively correlated with Ad-MSCs proliferation (p < 0.05). In summary, the SF-HA scaffold co-cultured with Ad-MSCs is a promising biomaterial for tracheal repair by activating the ERK signal pathway.


Subject(s)
Fibroins , Mesenchymal Stem Cells , Fibroins/metabolism , Tissue Scaffolds , Durapatite/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Cell Proliferation , Cell Differentiation , RNA, Messenger/metabolism , Tissue Engineering , Silk/metabolism , Osteogenesis
6.
Curr Biol ; 33(6): 1138-1146.e5, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36822201

ABSTRACT

The chloroplast is the most prominent member of a diverse group of plant organelles called the plastids, and it is characterized by its vital role in photosynthesis.1,2,3 Most of the ∼3,000 different proteins in chloroplasts are synthesized in the cytosol in precursor (preprotein) form, each with a cleavable transit peptide.4,5,6,7,8 Preproteins are imported via translocons in the outer and inner envelope membranes of the chloroplast, termed TOC and TIC, respectively.9,10,11,12,13 Discovery of the chloroplast-localized ubiquitin E3 ligase SUPPRESSOR OF PPI1 LOCUS1 (SP1) demonstrated that the nucleocytosolic ubiquitin-proteasome system (UPS) targets the TOC apparatus to dynamically control protein import and chloroplast biogenesis in response to developmental and environmental cues. The relevant UPS pathway is termed chloroplast-associated protein degradation (CHLORAD).14,15,16 Two homologs of SP1 exist, SP1-like1 (SPL1) and SPL2, but their roles have remained obscure. Here, we show that SP1 is ubiquitous in the Viridiplantae and that SPL2 and SPL1 appeared early during the evolution of the Viridiplantae and land plants, respectively. Through genetic and biochemical analysis, we reveal that SPL1 functions as a negative regulator of SP1, potentially by interfering with its ability to catalyze ubiquitination. In contrast, SPL2, the more distantly related SP1 homolog, displays partial functional redundancy with SP1. Both SPL1 and SPL2 modify the extent of leaf senescence, like SP1, but do so in diametrically opposite ways. Thus, SPL1 and SPL2 are bona fide CHLORAD system components with negative and positive regulatory functions that allow for nuanced control of this vital proteolytic pathway.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Proteins/metabolism , Chloroplasts/metabolism , Plastids/metabolism , Plants/metabolism , Protein Transport , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Plant Proteins/metabolism
7.
J Funct Biomater ; 14(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36826885

ABSTRACT

Silk fibroin is regarded as a promising biomaterial in various areas, including bone tissue regeneration. Herein, Laponite® (LAP), which can promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) to prepare an RSF/LAP hybrid hydrogel. This thixotropic hydrogel is injectable during the operation process, which is favorable for repairing bone defects. Our previous work demonstrated that the RSF/LAP hydrogel greatly promoted the osteogenic differentiation of osteoblasts in vitro. In the present study, the RSF/LAP hydrogel was found to have excellent biocompatibility and significantly improved new bone formation in a standard rat calvarial defect model in vivo. Additionally, the underlying biological mechanism of the RSF/LAP hydrogel in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was extensively explored. The results indicate that the RSF/LAP hydrogels provide suitable conditions for the adhesion and proliferation of BMSCs, showing good biocompatibility in vitro. With the increase in LAP content, the alkaline phosphatase (ALP) activity and mRNA and protein expression of the osteogenic markers of BMSCs improved significantly. Protein kinase B (AKT) pathway activation was found to be responsible for the inherent osteogenic properties of the RSF/LAP hybrid hydrogel. Therefore, the results shown in this study firmly suggest such an injectable RSF/LAP hydrogel with good biocompatibility (both in vitro and in vivo) would have good application prospects in the field of bone regeneration.

8.
ACS Appl Mater Interfaces ; 14(34): 39322-39331, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35980800

ABSTRACT

An ability to integrate adaptive coloration and tissue-like compositions, structures, as well as mechanical properties, and so forth into a material remains elusive. To address this problem, this work presents a solution whereby these features were integrated into a proteinic artificial skin through biomimetic design. In this artificial skin, silk fibroin was used to mimic the structural framework of the cytoskeleton due to its unique molecular network structure and outstanding and tunable mechanical properties. Meanwhile, a thermochromic filamentous network consisting of C25-GAGAGAGY amphiphilic peptides was designed to mimic the functional tracks in the cytoskeleton, enabling its temperature-adaptive coloration ability. The interconnected linkage between the structural frame and functional units makes this artificial skin have stable structures, mechanical properties, and functions. The whole protein composition also makes this artificial skin essentially different from other existing color-tunable artificial skins, which are a combination of organic and inorganic compounds. Furthermore, because the protein composition is compatible with a range of dyes, the chromatic gamut of adaptive coloration of the developed artificial skin can be further expanded by color fusion. With the further inclusion of other functional units, such as photothermal and magnetothermal nanoparticles, the thermochromism of the artificial skin could be realized through sun exposure and alternating magnetic field modulation. With this diversity in color change pathways and stimulation mode, as well as the environmental friendliness of the material used, these artificial proteinic skins have promising applications as sensors in physiological monitoring, food preservation, and anti-counterfeiting.


Subject(s)
Fibroins , Skin, Artificial , Biomimetics , Fibroins/chemistry , Hydrogels/chemistry , Skin
9.
J Mater Chem B ; 10(34): 6546-6556, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36000545

ABSTRACT

Porous scaffolds hold promise in the treatment of bone defects for bone tissue engineering due to their interconnected porous structure and suitable mechanical properties. Herein, LAPONITE® (LAP), which is able to promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) porous scaffolds. Due to hydrogen bonding and electrostatic interactions between RSF and LAP, RSF/LAP 3D porous scaffolds were successfully prepared. The pore size, porosity, and mechanical properties of the RSF/LAP 3D porous scaffolds were modulated during the preparation process. Evaluation of the proliferation of bone marrow mesenchymal stem cells (BMSCs) on the RSF/LAP 3D porous scaffolds in vitro indicated that the addition of LAP improved the adhesion and proliferation of cells. Additionally, alkaline phosphatase activity and osteospecific gene expression analysis showed that the RSF/LAP 3D porous scaffolds enhanced the osteogenic differentiation of BMSCs compared to the pristine RSF porous scaffolds, especially with a higher LAP content. The subcutaneous implantation of the RSF/LAP 3D porous scaffolds in rats demonstrated good histocompatibility in vivo. Therefore, RSF/LAP 3D porous scaffolds with good biocompatibility and biodegradability have good application prospects in the field of bone tissue engineering.


Subject(s)
Fibroins , Tissue Engineering , Animals , Cell Proliferation , Fibroins/chemistry , Osteogenesis , Porosity , Rats , Tissue Scaffolds/chemistry
10.
Biomacromolecules ; 23(9): 3928-3935, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35973042

ABSTRACT

The development of reliable glucose sensors for noninvasive monitoring is highly desirable and essential for diabetes detection. As a testing sample, sweat is voluminous and is easy to collect compared to blood. However, the application of sweat glucose sensors is generally limited because of their low stability and sensitivity compared to commercial glucometers. In this manuscript, a silk nanofibril (SNF)/reduced graphene oxide (RGO)/glucose oxidase (GOx) composite was developed as the working electrode of the sweat glucose sensor. The SNF/RGO/GOx composite was prepared via a facile two-step process, which involved the self-assembly of SNF from silk fibroin while reducing graphene oxide to RGO and immobilizing GOx on SNF. The SNF/RGO/GOx glucose sensor exhibited a low limit of detection (300 nM) and high sensitivity (18.0 µA/mM) in the sweat glucose range, covering both healthy people and diabetic patients (0-100 µM). Moreover, the SNF/RGO/GOx glucose sensors showed a long stability for at least 4 weeks. Finally, the SNF/RGO/GOx glucose sensor was applied to test the actual sweat samples from two volunteers and two sweating methods (by dry sauna and exercise). The results indicate the glucose data tested by the SNF/RGO/GOx glucose sensor were reliable, which correlated well to the data obtained from the commercial glucometer. Therefore, the SNF/RGO/GOx glucose sensor developed in this study may have a great potential for glucose control in personalized healthcare monitoring and chronic disease management.


Subject(s)
Biosensing Techniques , Graphite , Biosensing Techniques/methods , Electrochemical Techniques/methods , Glucose , Glucose Oxidase , Humans , Silk , Sweat , Sweating
11.
ACS Omega ; 7(21): 17841-17848, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664619

ABSTRACT

Here, the high-strength, high-ductility blends of poly(lactic acid) (PLA) with epoxidized soybean oil (ESO) and 3-aminophenylboronic acid (APBA) were successfully prepared via a melt-bending method. The effects of APBA addition on the mechanical and thermal properties, morphologies, and crystallization behavior of the blends were investigated. The results showed that the addition of APBA endowed the PLA/ESO/APBA blends with a good balance of strength and toughness. The yield strength of the PLA/ESO/APBA (90:10:3) blend was 70 MPa, which was 25% higher than that of the corresponding PLA/ESO blend without APBA (56 MPa), while its elongation at break reached 160%, which is greatly superior to that of pure PLA (6.5%). Scanning electron microscopy images showed that the incorporation of APBA significantly improved the compatibility between PLA and ESO, while gel permeation chromatography and rheological analysis suggested the occurrence of complex reactions between the three constituents, which improved the compatibility between PLA and ESO and enhanced the mechanical properties of the blends. Hence, the PLA/ESO/APBA blends possess great potential for application in the manufacture of environmentally friendly degradable plastics.

12.
ACS Appl Bio Mater ; 5(6): 3086-3094, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35608071

ABSTRACT

Silk fibroin is a natural polymer that has various material forms and wide applications. Hydrogel is one of the most attractive silk materials because of its hydrophilicity, biocompatibility, and flexibility. However, its applications are still quite limited because they have a complicated preparation process and/or low mechanical strength. Herein, a simple way to prepare tough silk fibroin hydrogels via a solvent-exchange method is introduced. The degummed silk fiber was directly dissolved in a calcium chloride/formic acid solution and then water was used to replace the solvent. The silk fibroin hydrogel that was obtained using this facile method exhibited even better mechanical properties than most silk fibroin hydrogels that have been reported in the literature. Also, the silk fibroin hydrogel maintained biocompatibility that was as good as that prepared via other methods. Finally, the possibility of using this regenerated silk fibroin hydrogel as a multi-functional platform (such as a catalyst carrier, photothermal agent, and underwater adhesive) has been discussed. Therefore, such a natural, sustainable, robust, and good biocompatible silk fibroin hydrogel that is prepared by an improved method may have great potential for further applications.


Subject(s)
Fibroins , Hydrogels , Polymers , Silk , Solvents
13.
J Mater Chem B ; 10(20): 3798-3807, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35416829

ABSTRACT

The co-delivery of multiple drugs using one drug carrier is a viable strategy to optimize drug dosage and reduce the side effects in chemotherapy. Herein, a hydrophilic animal protein (silk fibroin) and a hydrophobic plant protein (zein) were selected for preparing a composite drug carrier. Adapting our previously developed method for the preparation of regenerated silk fibroin (RSF) nanospheres, we prepared RSF/zein nanospheres that displayed an interesting structure including a single central hole. The particle size of the RSF/zein nanospheres was regulated from 150 to 460 nm by varying the preparation conditions, implying that such a drug carrier is suitable for both intravenous administration and lymphatic chemotherapy. Two anti-cancer drugs with different target sites, paclitaxel (PTX) and curcumin (CUR), were selected for the preparation of dual-drug-loaded CUR/PTX@RSF/zein nanospheres. Both drugs achieved a high loading capacity in the RSF/zein nanospheres, i.e., 8.2% for PTX and 12.1% for CUR. Subsequently, the encapsulated PTX and CUR were released from the RSF/zein nanospheres in a sustained manner for at least 7 days. Importantly, these dual-drug-loaded RSF/zein nanospheres exhibited a considerable synergistic therapeutic effect, showing more efficient suppression of in vitro cancer cell growth than free PTX or CUR, a combination of free PTX and CUR, or single-drug-loaded nanospheres. Therefore, the CUR/PTX@RSF/zein nanospheres developed in this study hold great potential for combination chemotherapy in future clinical applications.


Subject(s)
Curcumin , Fibroins , Nanospheres , Neoplasms , Zein , Animals , Curcumin/chemistry , Drug Carriers , Nanospheres/chemistry , Neoplasms/drug therapy , Paclitaxel/chemistry , Plant Proteins , Zein/chemistry
14.
Nanotechnology ; 32(41)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34214994

ABSTRACT

The 2D layered crystals can physically integrate with other non-2D components through van der Waals (vdW) interaction, forming mixed-dimensional heterostructures. As a new elemental 2D material, tellurium (Te) has attracted intense recent interest for high room-temperature mobility, excellent air-stability, and the easiness of scalable synthesis. To date, the Te is still in its research infancy, and optoelectronics with low-power consumption are less reported. Motivated by this, we report the fabrication of a mixed-dimensional vdW photodiode using 2D Te and 1D CdS nanobelt in this study. The heterojunction exhibits excellent self-powered photosensing performance and a broad response spectrum up to short-wave infrared. Under 520 nm wavelength, a high responsivity of 98 mA W-1is obtained at zero bias with an external quantum efficiency of 23%. Accordingly, the photo-to-dark current ratio and specific detectivity reach 9.2 × 103and 1.9 × 1011Jones due to the suppressed dark current. This study demonstrates the promising applications of Te/CdS vdW heterostructure in high-performance photodetectors. Besides, such a mixed-dimensional integration strategy paves a new way for device design, thus expanding the research scope for 2D Te-based optoelectronics.

15.
ACS Appl Mater Interfaces ; 13(24): 29008-29020, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34121382

ABSTRACT

In recent years, ionic conductive hydrogels have shown great potential for application in flexible sensors, energy storage devices, and actuators. However, developing facile and effective methods for fabricating such hydrogels remains a great challenge, especially for hydrogels that retain their properties in extreme environmental conditions, such as at subzero temperatures or storage in open-air conditions. Herein, a water-miscible ionic liquid (IL), such as 1-ethyl-3-methylimidazolium acetate (EMImAc), was introduced to form an IL/water binary solvent system for poly(vinyl alcohol) (PVA) to create ionic conductive PVA hydrogels. The physically crosslinked PVA/EMImAc/H2O hydrogels showed better mechanical properties and transparency than the traditional PVA hydrogel prepared by the freeze-thaw method due to the formation of homogeneous and small PVA microcrystals in the EMImAc/H2O binary solvent system. More importantly, the PVA/EMImAc/H2O hydrogel exhibited significant anti-freezing and water-retaining properties because of the presence of the IL. The hydrogels remained flexible and conductive at temperatures as low as -50 °C and retained more than 90% of their weight after storage in open-air conditions for 2 weeks. In addition, the thermal stability of the hydrogel could be increased to 95 °C through the addition of Mg(II) ions. A multimodal sensor based on the PVA/EMImAc/H2O/Mg(II) hydrogel showed high sensitivity and a quick response to changes in pressure, strain, and temperature, with both long-term stability and a wide working temperature range. This study may open a new route for the fabrication of functional PVA-based hydrogel electrolytes and provide a practical pathway for their use in multifunctional electronic and sensory device applications.

16.
ACS Omega ; 6(19): 12794-12800, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34056430

ABSTRACT

A functional N-halamine precursor with double bonds, 1-3-diallyl-s-triazine-2,4,6-trione (DTT), was synthesized and grafted onto polypropylene using dicumyl peroxide (DCP) as an initiator via melt blending at 200 °C. The DTT content grafted onto the polypropylene (PP) backbone was depended on both DTT and DCP concentrations in feed. The crystallization temperature of PP increased from 116 °C (neat PP) to 123 °C (10% DTT) with the increasing DTT content. Meanwhile, the crystallization rate and relative crystallinity of PP were significantly increased after introduction of the N-halamine precursor. Moreover, the incorporation of DTT had partial compensation for the decreasing mechanical properties of polypropylene, which resulted from degradation. When the amount of added DTT reached up to 5%, the chlorinated DTT-modified PP sheets were able to kill 105-6 cfu/mL Escherichia coli (CMCC 44103) and Staphylococcus aureus (ATCC 6538) within 10 min. The DTT-modified PP with the regenerating antibacterial property may have great potential for application in packaging, filters, and hygienic products.

17.
J Mater Chem B ; 9(8): 2025-2032, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33555002

ABSTRACT

The usage of a guided bone regeneration (GBR) membrane that prevents the ingrowth of fibroblast cells and enhances the regeneration rate is an effective strategy for bone regeneration therapy. Herein, LAPONITE® (LAP) nanoplatelets, a bioactive clay with good osteoinductivity, were incorporated within a regenerated silk fibroin (RSF) microfibrous mat via electrospinning. The as-prepared RSF-LAP hybrid microfibrous mats had an interconnected structure with pore size significantly smaller than that of the fibroblast cells, leading to an effective prevention of fibroblast cell ingrowth into the defect sites. As per the water contact angle measurements, the incorporation of LAP significantly improved the hydrophilicity of the RSF microfibrous mats. The in vitro cell experiment results show that the RSF-LAP microfibrous mats exhibited better cell adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) than the pristine RSF microfibrous mats. Moreover, the RSF-LAP microfibrous mats promoted osteogenic differentiation by upregulating alkaline phosphatase (ALP) activity and osteo-specific gene expression. Therefore, the results suggest that this easily fabricated LAP-incorporated RSF microfibrous mat has great potential to be a promising biomaterial for GBR applications.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Membranes, Artificial , Silicates/chemistry , Silk/chemistry , Alkaline Phosphatase/metabolism , Animals , Cell Proliferation/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Nanostructures/chemistry , Osteogenesis/drug effects , Rats
18.
Biomacromolecules ; 21(12): 5306-5314, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33206498

ABSTRACT

Spider dragline silk is well-known for its excellent combination of strength and extensibility as well as another unique property called supercontraction. In our previous work, the changes in conformations of the Nephila edulis spider dragline silk when subjected to different supercontraction processes were extensively investigated. When a native spider dragline silk had free supercontraction, and then restretched to its original length, the content and molecular orientation of different conformations (ß-sheet, helix, and random coil) changed but the mechanical properties remained almost the same. Therefore, herein, further supercontraction-stretching treatment was performed up to three cycles, and the corresponding structural changes were investigated. In addition to the synchrotron radiation FTIR (S-FTIR) microspectroscopy employed in our previous study, synchrotron radiation small-angle X-ray scattering (S-SAXS) and atomic force microscopy (AFM) were also used in this work to determine the structural changes of spider dragline silk in different scales. The results show that by repeating the supercontraction-stretching treatment, the ß-sheet structure content in spider dragline silk was slightly increased, but its orientation degree remained almost the same. Also, with the increase in cycle of supercontraction-stretching treatments, a 10.5 nm long period perpendicular to the silk fiber axis gradually appeared, endowing the spider dragline silk with periodic structure both along (6.6 nm, already existed in native silk and did not change with the supercontraction-stretching treatment) and perpendicular to the silk fiber axis. After the third supercontraction-stretching cycle, the AFM images displayed a clear 210 nm × 80 nm corn kernel-like structure on the surface of nanofibrils in spider dragline silks, which may be related to the aggregation of 10.5 nm × 6.6 nm periodic structure observed via S-SAXS. Finally, although the structure of spider dragline silk became increasingly regular with the rise in supercontraction-stretching cycles, mechanical properties remained constant after every cycle of the supercontraction-stretching treatment. These findings can aid in further understanding the structural changes that are related to the supercontraction of spider dragline silk and provide useful guidance in fabrication of high-performance regenerated or artificial silk fibers.


Subject(s)
Silk , Spiders , Animals , Scattering, Small Angle , X-Ray Diffraction
19.
Int J Biol Macromol ; 165(Pt A): 460-471, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32987077

ABSTRACT

In this work, a new N-halamine precursor with two epoxy groups, 1,3-bis(2,3-epoxypropyl)-s-triazine-2,4,6-trione (BETT), was synthesized and used to enhance the compatibility between poly(lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). The rheological analysis and GPC indicated that chain extension between PLA and PBAT occurred during the melt-blending in the presence of BETT. The PLA/PBAT chain extensions improved the compatibility between PLA and PBAT and hindered the crystallization of PLA. SEM images showed that PLA/PBAT blend gradually changed from the typical sea-island phase without BETT to a co-continuous structure with increase in amount of BETT. This showed that the interfacial compatibility between PLA and PBAT improved significantly on addition of BETT. Moreover, compared to PLA/PBAT blend, the mechanical properties of PLA/PBAT/BETT blends showed great improvement. Furthermore, the chlorinated PLA/PBAT/BETT sheets displayed excellent antibacterial activities against E. coli (CMCC 44103) and S. aureus (ATCC 6538) cultures, wherein the sheets with 17.5 ± 0.8 µg/cm2 of the active chlorine could kill all inoculated bacteria within 30 min.


Subject(s)
Alkenes/chemistry , Anti-Bacterial Agents , Escherichia coli/growth & development , Phthalic Acids/chemistry , Polyesters/chemistry , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
20.
J Mater Chem B ; 8(37): 8695-8701, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32857090

ABSTRACT

Two novel multi-hydroxyl N-halamine precursors were successfully synthesized in a green and facile way via Knoevenagel condensation reaction between barbituric acid and an aldehyde (citral or cinnamaldehyde), followed by a hydroxylation reaction with hydrogen peroxide. 1H-NMR and FT-IR spectral analyses confirmed their formation. Through the melt-blending process, the multi-hydroxyl derivatives of barbituric acid were introduced via transesterification into poly(ethylene terephthalate) (PET) at 265 °C in a rheometer. The crystallization behaviors of the modified PET samples were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and polarized optical microscopy (POM) analyses. The results showed that the crystallization temperature and crystallization rate of PET were significantly improved upon the introduction of the precursor. Meanwhile, the relative crystallinity of the modified PET samples increased with an increase in the dosage of the N-halamine precursor. After the treatment with sodium hypochlorite solution, the PET surfaces modified with N-halamine derivatives would impart powerful antibacterial properties and achieve 100% killing of Staphylococcus aureus (ATCC 6538) and Escherichia coli (CMCC44103) cells within 30 min. Therefore, the multi-hydroxyl N-halamine precursors exhibit great potential as bifunctional additives (nucleating and antibacterial agents) in the manufacturing of functional PET materials.


Subject(s)
Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Barbiturates/pharmacology , Polyethylene Terephthalates/pharmacology , Amines/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Barbiturates/chemical synthesis , Crystallization , Escherichia coli/drug effects , Microbial Sensitivity Tests , Polyethylene Terephthalates/chemical synthesis , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...