Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 187: 117201, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996859

ABSTRACT

Osteoporosis easily causes delayed fracture union, even non-union. It has been demonstrated that dehydroepiandrosterone (DHEA) supplementation can increase estrogen levels and improve bone mineral density (BMD) in the elderly, while the role of DHEA on fracture healing remains unknown. This study aimed to elucidate the impact of DHEA supplementation on osteoporotic fracture healing. Seventy-two female Sprague-Dawley rats were used. Forty-eight rats received ovariectomy (OVX), and the remaining rats received a sham OVX operation (sham group). A right transverse femoral osteotomy was performed in all rats at 12 weeks post-OVX. OVX rats were randomly allocated into 2 groups (n = 24 in each group): (i) ovariectomized rats (control group) and (ii) ovariectomized rats treated with DHEA (DHEA group, 5 mg/kg/day). The DHEA supplementation was initiated on the first day post-fracture for 3, 6, and 12 weeks. Fracture healing was evaluated by radiography, histology, biomechanical analysis, and dual-energy X-ray absorptiometry (DEXA). Serum biomarkers were analyzed using enzyme-linked immunosorbent assay (ELISA). At 3 and 6 weeks, radiographs revealed reduced calluses formation and lower radiographic scores in the control group than in other groups. The sham and DHEA groups showed higher BMD and bone mineral content (BMC) at the fracture site than the control group after fracture. Histological analysis revealed the fracture callus was remodeled better in the sham and DHEA groups than in the control group. At the early phase of healing, DHEA supplementation increased osteoblast number, callus area, and cartilage area than the control group. An increased bone area was observed in the DHEA group than in the control group at the late phase of healing. Additionally, improved biomechanical characteristics were observed in both the sham and DHEA groups than those in the control group post-fracture. ELISA showed higher levels of insulin-like growth factor-1 (IGF-1) and 17ß-estradiol (E2) in the DHEA group than in the control group post-fracture. Furthermore, the DHEA group exhibited significantly elevated alkaline phosphatase (ALP) and osteocalcin (OC) levels compared to the control group at 6 and 12 weeks. The DHEA group and the control group did not exhibit a notable difference in TRAP-5b levels. The present study demonstrated that the DHEA treatment has a favorable impact on osteoporotic fracture healing by enhancing callus formation, consolidation, and strength in the OVX rats.

2.
Gene ; 726: 144224, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31669646

ABSTRACT

MicroRNA-155 (miR-155) has been identified to be overexpressed in various human cancers including osteosarcoma. However, whether the up-regulation of miR-155 is associated with osteosarcoma cancer stem cells (CSCs) is not well understood. In the present study, we showed that miR-155 induced the acquisition of stem-like features in U2OS osteosarcoma cells by increasing the expression of both CSCs surface markers (CD24, CD90, CD133) and CSC-related transcriptional factors (Nanog, SOX2, Oct4, Bim-1). Inflammatory factor TNF-α upregulated the miR-155 expression in U2OS cells and formed a feedback regulatory loop with miR-155. Furthermore, TNF-α/miR-155 axis promoted the cell proliferation, invasion and epithelial-mesenchymal transition (EMT) process in a TP53INP1 independent manner. We also revealed that TNF-α/miR-155 axis induced osteosarcoma CSCs transformation via ERK signaling pathway. These results indicate a crucial role of miR-155 in the acquisition of osteosarcoma CSC phenotype and miR-155 may serve as a potential target in future osteosarcoma therapy.


Subject(s)
Carrier Proteins/genetics , Cell Transformation, Neoplastic/genetics , Heat-Shock Proteins/genetics , MicroRNAs/genetics , Neoplastic Stem Cells/pathology , Osteosarcoma/genetics , Tumor Necrosis Factor-alpha/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , MAP Kinase Signaling System/genetics , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Osteosarcoma/pathology , Signal Transduction/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...