Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Vis Exp ; (185)2022 07 01.
Article in English | MEDLINE | ID: mdl-35829646

ABSTRACT

In vitro microfluidic experimentation holds great potential to reveal many insights into the microphysiological phenomena occurring in conditions such as acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). However, studies in microfluidic channels with dimensions physiologically relevant to the terminal bronchioles of the human lung currently face several challenges, especially due to difficulties in establishing appropriate cell culture conditions, including media flow rates, within a given culture environment. The presented protocol describes an image-based approach to evaluate the structure of NCI-H441 human lung epithelial cells cultured in an oxygen-impermeable microfluidic channel with dimensions physiologically relevant to the terminal bronchioles of the human lung. Using phalloidin-based filamentous-actin staining, the cytoskeletal structures of the cells are revealed by confocal laser scanning microscopy, allowing for the visualization of individual as well as layered cells. Subsequent quantification determines whether the cell culture conditions being employed are producing uniform monolayers suitable for further experimentation. The protocol describes cell culture and layer evaluation methods in microfluidic channels and traditional fixed-well environments. This includes channel construction, cell culture and requisite conditions, fixation, permeabilization and staining, confocal microscopic imaging, image processing, and data analysis.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Cell Culture Techniques , Epithelial Cells , Humans , Lab-On-A-Chip Devices , Lung
2.
Biosensors (Basel) ; 12(6)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35735538

ABSTRACT

Biophysical insults that either reduce barrier function (COVID-19, smoke inhalation, aspiration, and inflammation) or increase mechanical stress (surfactant dysfunction) make the lung more susceptible to atelectrauma. We investigate the susceptibility and time-dependent disruption of barrier function associated with pulmonary atelectrauma of epithelial cells that occurs in acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). This in vitro study was performed using Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive evaluating technique for repetitive stress stimulus/response on monolayers of the human lung epithelial cell line NCI-H441. Atelectrauma was mimicked through recruitment/derecruitment (RD) of a semi-infinite air bubble to the fluid-occluded micro-channel. We show that a confluent monolayer with a high level of barrier function is nearly impervious to atelectrauma for hundreds of RD events. Nevertheless, barrier function is eventually diminished, and after a critical number of RD insults, the monolayer disintegrates exponentially. Confluent layers with lower initial barrier function are less resilient. These results indicate that the first line of defense from atelectrauma resides with intercellular binding. After disruption, the epithelial layer community protection is diminished and atelectrauma ensues. ECIS may provide a platform for identifying damaging stimuli, ventilation scenarios, or pharmaceuticals that can reduce susceptibility or enhance barrier-function recovery.


Subject(s)
COVID-19 , Pulmonary Atelectasis/etiology , Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , COVID-19/complications , COVID-19/physiopathology , Electric Impedance , Humans , Lung/physiopathology , Pneumonia, Aspiration/complications , Pneumonia, Aspiration/physiopathology , Pulmonary Atelectasis/physiopathology , Smoke Inhalation Injury/etiology , Smoke Inhalation Injury/physiopathology , Ventilator-Induced Lung Injury/complications , Ventilator-Induced Lung Injury/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...