Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.160
Filter
1.
Nat Prod Res ; : 1-10, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824425

ABSTRACT

The sciatic nerve is the largest sensorimotor nerve within the peripheral nervous system (PNS), possessing the ability to produce endogenous neurotrophins. Compound nerve action potentials (CNAPs) are regarded as a physiological/pathological indicator to identify nerve activity in signal transduction of the PNS. Astragaloside (AST), a small-molecule saponin purified from Astragalus membranaceus, is widely used to treat chronic disease. Nonetheless, the regulatory effects of AST on the sciatic nerve remain unknown. Therefore, the present investigation was undertaken to study the effect of AST on CNAPs of frog sciatic nerves. Here, AST depressed the conduction velocity and amplitude of CNAPs. Importantly, the AST-induced responses could be blocked by a Ca2+-free medium, or by applying all Ca2+ channel antagonists (CdCl2/LaCl3) or L-type Ca2+ channel blockers (nifedipine/diltiazem), but not the T-type and P-type Ca2+ channel antagonist (NiCl2). Altogether, these findings suggested that AST may attenuate the CNAPs of frog sciatic nerves in vitro via the L-type Ca2+-channel dependent mechanisms.

2.
Front Bioeng Biotechnol ; 12: 1404651, 2024.
Article in English | MEDLINE | ID: mdl-38832127

ABSTRACT

Skin wound healing is a complex and tightly regulated process. The frequent occurrence and reoccurrence of acute and chronic wounds cause significant skin damage to patients and impose socioeconomic burdens. Therefore, there is an urgent requirement to promote interdisciplinary development in the fields of material science and medicine to investigate novel mechanisms for wound healing. Cerium oxide nanoparticles (CeO2 NPs) are a type of nanomaterials that possess distinct properties and have broad application prospects. They are recognized for their capabilities in enhancing wound closure, minimizing scarring, mitigating inflammation, and exerting antibacterial effects, which has led to their prominence in wound care research. In this paper, the distinctive physicochemical properties of CeO2 NPs and their most recent synthesis approaches are discussed. It further investigates the therapeutic mechanisms of CeO2 NPs in the process of wound healing. Following that, this review critically examines previous studies focusing on the effects of CeO2 NPs on wound healing. Finally, it suggests the potential application of cerium oxide as an innovative nanomaterial in diverse fields and discusses its prospects for future advancements.

3.
IDCases ; 36: e01953, 2024.
Article in English | MEDLINE | ID: mdl-38707650

ABSTRACT

One patient with rifampin-resistant tuberculosis underwent emergency left pneumonectomy and thoracic gauze packing for hemoptysis due to recurrent hemoptysis after transcatheter arterial embolization. Vital signs were maintained by mechanical ventilation and medication. Tracheotomy and anti-tuberculosis treatment were performed. After half a year of follow-up, the patient's condition was stable.

5.
Foods ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731727

ABSTRACT

Dendrobium nobile Lindl. polysaccharide (DNP1) showed good anti-inflammatory activity in our previous study. In this study, the structural characterization of DNP1 and its mode of action on TLR4 were investigated. Structural characterization suggested that DNP1 was a linear glucomannan composed of (1 → 4)-ß-Manp and (1 → 4)-ß-Glcp residues, and the acetyl group was linked to the C-2 of Manp. The possible repeating structural units of DNP1 were [→4)-2-OAc-ß-Manp-(1→]3 →4)-ß-Glcp-(1→. Surface plasmon resonance (SPR) binding test results showed that DNP1 did not bind directly to TLR4. The TLR4 and MD2 receptor blocking tests confirmed that DNP1 needs MD2 and TLR4 to participate in its anti-inflammatory effect. The binding energy of DNP1 to TLR4-MD2 was -7.9 kcal/mol, indicating that DNP1 could bind to the TLR4-MD2 complex stably. Therefore, it is concluded that DNP1 may play an immunomodulatory role by binding to the TLR4-MD2 complex and inhibiting the TLR4-MD2-mediated signaling pathway.

6.
Adv Mater ; : e2402961, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727517

ABSTRACT

Artificial heterostructures with structural advancements and customizable electronic interfaces are fundamental for achieving high-performance lithium-ion batteries (LIBs). Here, a design idea for a covalently bonded lateral/vertical black phosphorus (BP)-graphdiyne oxide (GDYO) heterostructure achieved through a facile ball-milling approach, is designed. Lateral heterogeneity is realized by the sp2-hybridized mode P-C bonds, which connect the phosphorus atoms at the edges of BP with the carbon atoms of the terminal acetylene in GDYO. The vertical connection of the heterojunction of BP and GDYO is connected by P-O-C bond. Experimental and theoretical studies demonstrate that BP-GDYO incorporates interfacial and structural engineering features, including built-in electric fields, chemical bond interactions, and maximized nanospace confinement effects. Therefore, BP-GDYO exhibits improved electrochemical kinetics and enhanced structural stability. Moreover, through ex- and in-situ studies, the lithiation mechanism of BP-GDYO, highlighting that the introduction of GDYO inhibits the shuttle/dissolution effect of phosphorus intermediates, hinders volume expansion, provides more reactive sites, and ultimately promotes reversible lithium storage, is clarified. The BP-GDYO anode exhibits lithium storage performance with high-rate capacity and long-cycle stability (602.6 mAh g-1 after 1 000 cycles at 2.0 A g-1). The proposed interfacial and structural engineering is universal and represents a conceptual advance in building high-performance LIBs electrode.

7.
BMC Anesthesiol ; 24(1): 175, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760700

ABSTRACT

BACKGROUND: In critically ill patients receiving invasive mechanical ventilation (IMV), it is unable to determine early which patients require tracheotomy and whether early tracheotomy is beneficial. METHODS: Clinical data of patients who were first admitted to the ICU and underwent invasive ventilation for more than 24 h in the Medical Information Marketplace in Intensive Care (MIMIC)-IV database were retrospectively collected. Patients were categorized into successful extubation and tracheotomy groups according to whether they were subsequently successfully extubated or underwent tracheotomy. The patients were randomly divided into model training set and validation set in a ratio of 7:3. Constructing predictive models and evaluating and validating the models. The tracheotomized patients were divided into the early tracheotomy group (< = 7 days) and the late tracheotomy group (> 7 days), and the prognosis of the two groups was analyzed. RESULTS: A total of 7 key variables were screened: Glasgow coma scale (GCS) score, pneumonia, traumatic intracerebral hemorrhage, hemorrhagic stroke, left and right pupil responses to light, and parenteral nutrition. The area under the receiver operator characteristic (ROC) curve of the prediction model constructed through these seven variables was 0.897 (95% CI: 0.876-0.919), and 0.896 (95% CI: 0.866-0.926) for the training and validation sets, respectively. Patients in the early tracheotomy group had a shorter length of hospital stay, IMV duration, and sedation duration compared to the late tracheotomy group (p < 0.05), but there was no statistically significant difference in survival outcomes between the two groups. CONCLUSION: The prediction model constructed and validated based on the MIMIC-IV database can accurately predict the outcome of tracheotomy in critically ill patients. Meanwhile, early tracheotomy in critically ill patients does not improve survival outcomes but has potential advantages in shortening the duration of hospitalization, IMV, and sedation.


Subject(s)
Critical Illness , Respiration, Artificial , Tracheotomy , Humans , Tracheotomy/methods , Male , Female , Middle Aged , Prognosis , Retrospective Studies , Aged , Respiration, Artificial/methods , Time Factors , Intensive Care Units , Glasgow Coma Scale , Predictive Value of Tests , ROC Curve
8.
J Imaging ; 10(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38786565

ABSTRACT

Accurately detecting defects while reconstructing a high-quality normal background in surface defect detection using unsupervised methods remains a significant challenge. This study proposes an unsupervised method that effectively addresses this challenge by achieving both accurate defect detection and a high-quality normal background reconstruction without noise. We propose an adaptive weighted structural similarity (AW-SSIM) loss for focused feature learning. AW-SSIM improves structural similarity (SSIM) loss by assigning different weights to its sub-functions of luminance, contrast, and structure based on their relative importance for a specific training sample. Moreover, it dynamically adjusts the Gaussian window's standard deviation (σ) during loss calculation to balance noise reduction and detail preservation. An artificial defect generation algorithm (ADGA) is proposed to generate an artificial defect closely resembling real ones. We use a two-stage training strategy. In the first stage, the model trains only on normal samples using AW-SSIM loss, allowing it to learn robust representations of normal features. In the second stage of training, the weights obtained from the first stage are used to train the model on both normal and artificially defective training samples. Additionally, the second stage employs a combined learned Perceptual Image Patch Similarity (LPIPS) and AW-SSIM loss. The combined loss helps the model in achieving high-quality normal background reconstruction while maintaining accurate defect detection. Extensive experimental results demonstrate that our proposed method achieves a state-of-the-art defect detection accuracy. The proposed method achieved an average area under the receiver operating characteristic curve (AuROC) of 97.69% on six samples from the MVTec anomaly detection dataset.

9.
Neuroimage ; 295: 120648, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761882

ABSTRACT

BACKGROUND: Cerebellar intermittent theta burst stimulation (iTBS) modulates the excitability of the cerebral cortex and may enhance attentional performance. To date, few studies have conducted iTBS on healthy subjects for one week and used electroencephalography (EEG) to investigate the effect of multiple stimulation sessions on resting-state functional brain networks and the daily stimulation effect on attentional performance. METHODS: 16 healthy subjects participated in a one-week experiment, receiving bilateral cerebellar iTBS or sham stimulation and engaging in multi-task attentional training. The primary measures were the one-week attentional performance and pre- and post-experiment resting-state EEG activities. Amplitude Envelope Correlation (AEC) was used to construct the functional connectivity in the eye-open (EO) and eye-closed (EC) phases. RESULTS: At least three sessions of iTBS were required to enhance multi-task performance significantly, whereas only one or two sessions failed to elicit the improvement. Compared with the control group, iTBS induced significant changes in PSD, AEC functional connectivity, and AEC network properties during the EO phase, while it had little effect during the EC phase. During the EO phase, the network property changes of the iTBS subject were correlated with improved attentional performance. CONCLUSION: The multi-task performance requires multiple stimulations to enhance. iTBS affects the resting-state alpha band brain activities during the EO rather than the EC phase. The AEC network properties may serve as a biomarker to assess the attentional potential of healthy subjects.

10.
Front Biosci (Landmark Ed) ; 29(5): 170, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38812306

ABSTRACT

Ischemia-reperfusion injury (IRI) is a complex phenomenon. Although researchers have long been aware of IRI, its complex signaling events and potential therapeutic targets are still an active research area. The role of reactive oxygen species in IRI has garnered great interest among scientists. Recent studies have found that reactive oxygen species produced by IRI can activate redox-sensitive transient receptor potential channels (redox TRPs). The discovery of redox TRPs provides a new perspective for understanding the mechanism of IRI.


Subject(s)
Oxidation-Reduction , Reactive Oxygen Species , Reperfusion Injury , Transient Receptor Potential Channels , Reperfusion Injury/metabolism , Humans , Reactive Oxygen Species/metabolism , Animals , Transient Receptor Potential Channels/metabolism , Signal Transduction
11.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38813967

ABSTRACT

Social comparison is a common phenomenon in our daily life, through which people get to know themselves, and plays an important role in depression. In this study, event-related potential (ERP) was used to explore the temporal course of social comparison processing in the subthreshold depression group. Electrophysiological recordings were acquired from 30 subthreshold depressed individuals and 31 healthy individuals while they conducted the adapted dot estimation task. The ERP results revealed that there was a significant difference of feedback-related negativity (FRN) in the process of social comparison. Especially only in the subthreshold depression, the FRN amplitudes of worse off than some, better off than many comparisons were larger than those of upward comparisons and downward comparisons. Our results suggested that the abnormal reward sensitivity for worse off than some, better off than many comparisons might be prodromal symptoms in the subthreshold depression.


Subject(s)
Depression , Electroencephalography , Evoked Potentials , Humans , Male , Female , Young Adult , Evoked Potentials/physiology , Depression/physiopathology , Social Comparison , Adult , Brain/physiopathology , Brain/physiology , Reward
12.
J Agric Food Chem ; 72(22): 12832-12841, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38785419

ABSTRACT

Capsaicin (CAP) is a primary indicator for assessing the level of pungency. Herein, iron-based single-atom nanozymes (SAzymes) (Fe/NC) with exceptional oxidase-like activity were used to construct an immunosensor for CAP analysis. Fe/NC could imitate oxidase actions by transforming O2 to •O2- radicals in the absence of hydrogen peroxide (H2O2), which could avoid complex operations and unstable results. By regulating the Fe atom loads, an optimal Fe0.7/NC atom usage rate could improve the catalytic activity (Michaelis-Menten constant (Km) = 0.09 mM). Fe0.7/NC was integrated with goat antimouse IgG by facile mix incubation to develop a competitive enzyme-linked immunosorbent assay (ELISA). Our Fe0.7/NC immunosensing platform is anticipated to outperform the conventional ELISA in terms of stability and shelf life. The proposed immunosensor provided color responses across 0.01-1000 ng/mL CAP concentrations, with a detection limit of 0.046 ng/mL. Fe/NC may have potential as nanozymes for CAP detection in spicy foods, with promising applications in food biosensing.


Subject(s)
Biosensing Techniques , Capsaicin , Capsaicin/analysis , Capsaicin/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Oxidoreductases/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Iron/chemistry , Iron/analysis , Limit of Detection , Hydrogen Peroxide/chemistry , Food Analysis/methods
13.
Int J Radiat Biol ; : 1-13, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776447

ABSTRACT

PURPOSE: Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS: Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.

14.
J Dig Dis ; 25(3): 191-199, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38697920

ABSTRACT

OBJECTIVE: To compare the detection rate and diagnostic accuracy of cardia polyps using endoscopy with blue laser imaging (BLI) and white-light imaging (WLI). METHODS: Patients were randomly divided into the BLI group and WLI group according to the endoscopic procedures. BLI followed by WLI was conducted in the BLI group, whereas WLI followed by BLI examination was conducted in the WLI group. The number, size, microstructure, and microvascular patterns of cardia polyps detected were recorded. Biopsy of the polyps was then performed. RESULTS: The detection rate of cardia polyps in the BLI group was higher than that in the WLI group (7.87% vs 4.22%, P = 0.018). The rate of overlooked lesions in the BLI group was lower than in the WLI group (0.64% vs 3.38%, P = 0.003). The diagnostic coincidence rate between magnifying BLI and histopathology was 88.16%. The sensitivity, specificity, positive predictive value and negative predictive value for the diagnosis of neoplastic lesions by magnifying endoscopy with BLI were 90.91%, 87.69%, 55.56%, and 98.28%, respectively. The most remarkable patterns for predicting inflammatory polyps were the prolonged and fine network patterns (sensitivity 71.43%, specificity 93.75%). Small round combined with honeycomb patterns were the most common among fundic gland polyps (sensitivity 80.00%, specificity 98.48%). Neoplastic lesions presented as villous or ridge-like combined with core vascular or unclear pattern for both microvascular and microstructure patterns. CONCLUSION: BLI is more effective than WLI in the detection and diagnosis of cardia polyps, and magnifying endoscopy with BLI may help diagnose such lesions.


Subject(s)
Cardia , Feasibility Studies , Stomach Neoplasms , Humans , Female , Male , Middle Aged , Cardia/pathology , Cardia/diagnostic imaging , Adult , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology , Aged , Polyps/diagnostic imaging , Polyps/diagnosis , Gastroscopy/methods , Sensitivity and Specificity , Predictive Value of Tests , Lasers
15.
J Neural Eng ; 21(2)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38565132

ABSTRACT

Objective.Understanding the intricate relationship between structural connectivity (SC) and functional connectivity (FC) is pivotal for understanding the complexities of the human brain. To explore this relationship, the heat diffusion model (HDM) was utilized to predict FC from SC. However, previous studies using the HDM have typically predicted FC at a critical time scale in the heat kernel equation, overlooking the dynamic nature of the diffusion process and providing an incomplete representation of the predicted FC.Approach.In this study, we propose an alternative approach based on the HDM. First, we introduced a multiple-timescale fusion method to capture the dynamic features of the diffusion process. Additionally, to enhance the smoothness of the predicted FC values, we employed the Wavelet reconstruction method to maintain local consistency and remove noise. Moreover, to provide a more accurate representation of the relationship between SC and FC, we calculated the linear transformation between the smoothed FC and the empirical FC.Main results.We conducted extensive experiments in two independent datasets. By fusing different time scales in the diffusion process for predicting FC, the proposed method demonstrated higher predictive correlation compared with method considering only critical time points (Singlescale). Furthermore, compared with other existing methods, the proposed method achieved the highest predictive correlations of 0.6939±0.0079 and 0.7302±0.0117 on the two datasets respectively. We observed that the visual network at the network level and the parietal lobe at the lobe level exhibited the highest predictive correlations, indicating that the functional activity in these regions may be closely related to the direct diffusion of information between brain regions.Significance.The multiple-timescale fusion method proposed in this study provides insights into the dynamic aspects of the diffusion process, contributing to a deeper understanding of how brain structure gives rise to brain function.


Subject(s)
Connectome , Humans , Connectome/methods , Hot Temperature , Brain , Diffusion Tensor Imaging/methods , Parietal Lobe , Magnetic Resonance Imaging/methods
16.
Gland Surg ; 13(3): 383-394, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38601277

ABSTRACT

Background: In postoperative setting, breast cancer (BC) patients can experience adverse effects, including fatigue, sleep disorders, and pain, which substantially affect their health-related quality of life (HRQoL). This study sought to assess the effectiveness of a WeChat-based multimodal nursing program (WCBMNP) that was specifically designed for the rehabilitation of women following BC surgery. Methods: BC patients were randomly, single-blinded allocated to either the intervention (n=62) or control (n=63) cohorts. Over a period of 6 months (24 weeks), the intervention cohort received a WCBMNP in addition to routine nursing care, while the control cohort received routine nursing care only. To evaluate patients' fear of cancer recurrence (FCR), their overall fear score was assessed using the Japanese version of the Concerns About Recurrence Scale (CARS-J) for primary outcome. The initial outcome (HRQoL) and secondary results, such as fatigue, sleep, and pain, were examined using the Functional Assessment of Cancer Therapy-Breast (FACT-B, version 4.0) and Nursing Rating Scale (NRS), respectively. Results: Two hundred and ten participants, 85 participants were excluded. Compared to the controls (n=63), the intervention cohort (n=62) showed statistically significant improvements in their CARS-J scores. The intervention cohort aggregate scores on the FACT-B improved significantly but were affected by the compounding influences of cohort dynamics, temporal progression, and their interaction. Similar improvements were observed in the social/family and functional well-being domains. Emotional well-being was improved based on the effects of time and group-time interaction. In the intervention cohort, the "BC-specific subscale for additional concerns" was affected by group and time, whereas physical well-being was only affected by time. Conversely, there were no statistically significant changes in the variables of fatigue, sleep, and pain. Conclusions: The WCBMNP reduced FCR and significantly increased the HRQoL of female patients with BC postoperatively. The WCBMNP could be implemented as a postoperative rehabilitation intervention in this patient population to improve outcomes. Trial Registration: Chinese Clinical Trial Registry (ChiCTR2400081557).

17.
Phytochem Anal ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639052

ABSTRACT

INTRODUCTION: Smilacis Glabrae Rhizoma (SGR) is rich in chemical constituents with a variety of pharmacological activities. However, in-depth research has yet to be conducted on the chemical and pharmacodynamic constituents of SGR. MATERIALS AND METHODS: In this study, the chemical constituents of SGR were analyzed using liquid chromatography-mass spectrometry, and the pharmacodynamic compounds responsible for the medicinal effects of SGR were elucidated through a literature review. RESULTS: In total, 20 potentially new compounds, including 16 flavonoids (C19, C20, and C27-C40) and four phenylpropanoids (C107, C112, C113, and C118), together with 161 known ones were identified in the ethanol extract of SGR using liquid chromatography-mass spectrometry, and 25 of them were unequivocally identified by comparison with reference compounds. Moreover, 17 known constituents of them were identified in the plants of genus Smilax for the first time, and 16 were identified in the plant Smilax glabra Roxb. for the first time. Of 161 known compounds, 84 constituents (including isomers) have been reported to have 17 types of pharmacological activities, covering all known pharmacological activities of SGR; among these 84 bioactive constituents, six were found in the plants of genus Smilax for the first time and five were found in S. glabra for the first time, which are new bioactive constituents found in the plants of genus Smilax and the plant S. glabra, respectively. CONCLUSION: The results provide further information on the chemical composition of SGR, laying the foundation for the elucidation of the pharmacodynamic substances of SGR.

18.
Phytochemistry ; 222: 114110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663824

ABSTRACT

Molecular networking strategy-based prioritization of the isolation of the rarely studied soft coral Sinularia tumulosa yielded 14 sesquiterpenes. These isolated constituents consisted of nine different types of carbon frameworks, namely asteriscane, humulane, capillosane, seco-asteriscane, guaiane, dumortane, cadinane, farnesane, and benzofarnesane. Among them, situmulosaols A-C (1, 3 and 4) were previously undescribed ones, whose structures with absolute configurations were established by the combination of extensive spectral data analyses, quantum mechanical-nuclear magnetic resonance and time-dependent density functional theory electronic circular dichroism calculations, the Snatzke's method, and the modified Mosher's method. Notably, situmulosaol C (4) was the second member of capillosane-type sesquiterpenes. The plausible biogenetic relationships of these skeletally different sesquiterpenes were proposed. All sesquiterpenoids were evaluated for their antibacterial, cytotoxic and anti-inflammatory effects. The bioassay results showed compound 14 exhibited significant antibacterial activities against a variety of fish and human pathogenic bacteria with MIC90 values ranging from 3.6 to 33.8 µg/mL. Moreover, moderate cytotoxic effects against HEL cells for components 13 and 14 and moderate inhibitory effect on lipopolysaccharide-induced inflammatory responses in RAW264.7 cells for substance 13 were also observed.


Subject(s)
Anthozoa , Sesquiterpenes , Anthozoa/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Animals , Mice , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , China , RAW 264.7 Cells , Microbial Sensitivity Tests , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Structure-Activity Relationship , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Density Functional Theory , Dose-Response Relationship, Drug
19.
Int J Nanomedicine ; 19: 3641-3655, 2024.
Article in English | MEDLINE | ID: mdl-38681094

ABSTRACT

DNA can be used for precise construction of complex and flexible micro-nanostructures, including DNA origami, frame nucleic acids, and DNA hydrogels. DNA nanomaterials have good biocompatibility and can enter macrophages via scavenger receptor-mediated endocytosis. DNA nanomaterials can be uniquely and flexibly designed to ensure efficient uptake by macrophages, which represents a novel strategy to regulate macrophage function. With the development of nanotechnology, major advances have been made in the design and manufacturing of DNA nanomaterials for clinical therapy. In diseases accompanied by macrophage disturbances including tumor, infectious diseases, arthritis, fibrosis, acute lung injury, and atherosclerosis, DNA nanomaterials received considerable attention as potential treatments. However, we lack sufficient information to guarantee precise targeting of macrophages by DNA nanomaterials, which precludes their therapeutic applications. In this review, we summarize recent studies of macrophage-targeting DNA nanomaterials and discuss the limitations and challenges of this approach with regard to its potential use as a biological therapy.


Subject(s)
DNA , Macrophages , Nanostructures , Humans , Nanostructures/chemistry , DNA/chemistry , Macrophages/drug effects , Animals , Biological Therapy/methods , Nanotechnology/methods
20.
ACS Appl Bio Mater ; 7(5): 2887-2898, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38632900

ABSTRACT

Collagen is a major component of the tissue matrix, and soybean can regulate the tissue immune response. Both materials have been used to fabricate biomaterials for tissue repair. In this study, adult and fetal human astrocytes were grown in a soy protein isolate (SPI)-collagen hybrid gel or on the surface of a cross-linked SPI-collagen membrane. Hybrid materials reduced the cell proliferation rate compared to materials generated by collagen alone. However, the hybrid materials did not significantly change the cell motility compared to the control collagen material. RNA-sequencing (RNA-Seq) analysis showed downregulated genes in the cell cycle pathway, including CCNA2, CCNB1, CCNB2, CCND1, CCND2, and CDK1, which may explain lower cell proliferation in the hybrid material. This study also revealed the downregulation of genes encoding extracellular matrix (ECM) components, including HSPG2, LUM, SDC2, COL4A1, COL4A5, COL4A6, and FN1, as well as genes encoding chemokines, including CCL2, CXCL1, CXCL2, CX3CL1, CXCL3, and LIF, for adult human astrocytes grown on the hybrid membrane compared with those grown on the control collagen membrane. The study explored the cellular and transcriptional responses of human astrocytes to the hybrid material and indicated a potential beneficial function of the material in the application of neural repair.


Subject(s)
Astrocytes , Biocompatible Materials , Cell Proliferation , Humans , Astrocytes/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Materials Testing , Collagen/chemistry , Particle Size , Cells, Cultured , Cell Movement/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...