Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 44(3): 1397-1406, 2023 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-36922201

ABSTRACT

In order to understand the spatial distribution and sources of heavy metals in surface sediments of MaoMing city and to reasonably evaluate the ecological risk of heavy metals in sediments of the study area, the contents of heavy metals (As, Hg, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) in surface sediments of eight rivers and three reservoirs were detected, and the risks of heavy metals were assessed using the geo-accumulation index (Igeo), potential ecological disk index (RI), and potential adverse biological impacts (ΣTUs). The sources of heavy metals were analyzed via correlation, principal component analysis (PCA), and positive matrix factorization (PMF). The results showed that the ω(Zn) (147.56 mg·kg-1) and ω(Hg) (0.20 mg·kg-1) were 3.72 and 2.25 times the background value, respectively, and the spatial distributions of Cd, Co, Cu, Mn, Ni, and Zn were in the order of northern>central>western>southeast. The geo-accumulation index results showed that Zn was at a moderate pollution level, 76.6% of the sampling sites of Hg were at a light-heavy pollution level, and other heavy metals were at a non-light pollution level. The results of potential ecological risk and potential adverse biological impacts indicated that the potential ecological risk index and toxicity effect of Gaozhou Reservoir were higher than those of other rivers, and Hg was the major contributor to heavy metal pollution. The three factors extracted from principal component analysis and positive matrix factorization represented natural sources, agricultural sources, and industrial sources, respectively. Therefore, in order to reduce the health hazards caused by heavy metals in sediments, a prevention and control system for the Hg element should be established.

2.
Environ Sci Pollut Res Int ; 28(2): 1889-1900, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32860603

ABSTRACT

In January 2012, a serious accident polluted the Longjiang River with high concentrations of cadmium (Cd) and other concomitant metals and metalloids in the water. After emergency treatment (i.e., the addition of coagulants), these metals and metalloids were transferred from the water into the sediment through precipitation of the flocculent materials produced. In this study, the long-term distribution of six metals and metalloids in the sediment of the Longjiang River was investigated and their ecological risks were assessed. Approximately 1 year after the accident (i.e., late 2012), the average Cd content in the sediment of the affected sites decreased to 25.6 ± 19.5 mg/kg, which was 8 times higher than that of 3.16 ± 3.18 mg/kg in the upstream reference sites. In 2016 and 2017, the average Cd content in the sediment of the affected sites further decreased to 4.91 ± 2.23 and 6.27 ± 4.27 mg/kg, respectively. Compared with late 2012, the amounts of Zn, Pb, and Cu obviously decreased in 2016 and 2017, whereas there were no obvious differences in the As and Hg amounts during 3 years considered. Among metals and metalloids, the average contribution of Cd to the potential ecological risk index (RI) was 90%, 69%, and 70% in the affected areas in 2012, 2016, and 2017, respectively, suggesting that Cd was the most important factor affecting the ecological risk of metals in the Longjiang River. It should be noted that the average contribution of Hg to RI in the affected areas increased from 8% in 2012 to 25% and 23% in 2016 and 2017, respectively. The sequence of contribution of six elements was Cd > Hg > As>Pb > Cu ≈ Zn. A high ecological risk of metals and metalloids was found in the sediments of two reservoirs, probably owing to the barrier effect of the dam. This study will be useful for the environmental management of rivers affected by accidental pollution of metals and metalloids.


Subject(s)
Metalloids , Metals, Heavy , Water Pollutants, Chemical , Accidents , China , Environmental Monitoring , Geologic Sediments , Metalloids/analysis , Metals, Heavy/analysis , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
3.
Huan Jing Ke Xue ; 40(1): 488-495, 2019 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-30628309

ABSTRACT

Emergent cadmium pollution can cause water quality deterioration in rivers, which destroys the aquatic eco-environment and poses threats to human health. Fish species in these aquatic systems are prone to such pollution incidents and act as important indicators of the pollution level. Because cadmium enters the systematic circulation of fish and is non-biodegradable, the investigation of cadmium accumulation in fish bodies provides insights into the detrimental effects of cadmium pollution on the aquatic biological system. This research aims to validate the eco-environmental risks associated with emergent cadmium pollution incidents based on the investigation of the different tissues and organs of diverse fish species. The investigation was conducted six times along the Longjiang River using sampling methods during which all fish species were also classified and analyzed based on the water layer they reside in and their feeding habits. The results show that the cadmium concentration in the fish tissues is significantly higher in the former three investigations compared with that of the latter three analyses. For herbivorous, carnivorous, and omnivorous fish species, the cadmium concentration of their different tissues and organs follows the order:kidney > liver > gut > gill > egg > scale ≈ muscle. The cadmium concentration in the kidney is significantly higher (P<0.05) than that in any other organs of the fish species. This agrees with the fact that the kidney intensively metabolizes and accumulates heavy metals. The cadmium concentration in the same tissues or organs of the fish species living in different water layers follows the trend:demersal fish species > middle lower-layer species > middle upper-layer species. The sequence of the cadmium bioaccumulation factors in the muscles of different fish species is omnivore > carnivorous > herbivorous, that is, 8.32, 6.33, and 5.15, respectively, while the bioaccumulation factors in the muscles of the fish species in different water layers decrease in the following sequence:demersal fish species (8.18) > middle bottom-layer fish species (7.70) > middle upper-layer fish species (4.99). These experimental results indicate the biomagnification effects in heavy metal-polluted aquatic environments, where the bioaccumulation of heavy metals by fish is related to both the overall pollution level and local residential environment.


Subject(s)
Cadmium/analysis , Fishes , Rivers , Water Pollutants, Chemical/analysis , Animals , China , Environmental Monitoring , Metals, Heavy
4.
J Cell Biochem ; 120(4): 5085-5096, 2019 04.
Article in English | MEDLINE | ID: mdl-30259568

ABSTRACT

20(S)-protopanaxadiol (PPD)-type ginsenosides are generally believed to be the most pharmacologically active components of Panax ginseng. These compounds induce apoptotic cell death in various cancer cells, which suggests that they have anti-cancer activity. Anti-angiogenesis is a promising therapeutic approach for controlling angiogenesis-related diseases such as malignant tumors, age-related macular degeneration, and atherosclerosis. Studies showed that 20(S)-PPD at low concentrations induces endothelial cell growth, but in our present study, we found 20(S)-PPD at high concentrations inhibited cell growth and mediated apoptosis in human umbilical vein endothelial cells (HUVECs). The mechanism by which high concentrations of 20(S)-PPD mediate endothelial cell apoptosis remains elusive. The present current study investigated how 20(S)-PPD induces apoptosis in HUVECs for the first time. We found that caspase-9 and its downstream caspase, caspase-3, were cleaved into their active forms after 20(S)-PPD treatment. Treatment with 20(S)-PPD decreased the level of Bcl-2 expression but did not change the level of Bax expression. 20(S)-PPD induced endoplasmic reticulum stress in HUVECs and stimulated UPR signaling, initiated by protein kinase R-like endoplasmic reticulum kinase (PERK) activation. Total protein expression and ATF4 nuclear import were increased, and CEBP-homologous protein (CHOP) expression increased after treatment with 20(S)-PPD. Furthermore, siRNA-mediated knockdown of PERK or ATF4 inhibited the induction of CHOP expression and 20(s)-PPD-induced apoptosis. Collectively, our findings show that 20(S)-PPD inhibits HUVEC growth by inducing apoptosis and that ATF4 expression activated by the PERK-eIF2α signaling pathway is essential for this process. These findings suggest that high concentrations of 20(S)-PPD could be used to treat angiogenesis-related diseases.


Subject(s)
Activating Transcription Factor 4/metabolism , Apoptosis/drug effects , Eukaryotic Initiation Factor-2/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Sapogenins/pharmacology , Signal Transduction , eIF-2 Kinase/metabolism , Caspase 3/metabolism , Cell Proliferation/drug effects , Down-Regulation/drug effects , Endoplasmic Reticulum Stress/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Models, Biological , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects
5.
Huan Jing Ke Xue ; 39(8): 3622-3630, 2018 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-29998668

ABSTRACT

During typhoon "Mujigae" in October 2015, water samples and surface sediments were collected from Gaozhou Reservoir, a drinking water reservoir, for simulation and analysis of the kinetics of suspended solids adsorption to nitrogen and phosphorus and the adsorption isotherms of suspended solids with different particle sizes and different concentrations. The results showed no obvious nitrogen adsorption of suspended solids of Gaozhou Reservoir. However, the adsorption effect to phosphorus by suspended solids was significant and the equilibrium time of phosphorus adsorption was 10 hours. The adsorption capacity of phosphorus increased with the decrease of sediment particle size when particle sizes were less than 0.25 mm, whereas it increased with the increase of suspended solids concentration when the concentration was in the range of 0.2-2.0 kg·m-3. The adsorption isotherm of suspended solids to phosphorus conformed to the Langmuir and Freundlich models, and the maximum adsorption capacity increased with the decrease of suspended solids particle sizes, which increased with the increase of suspended solids concentrations. The maximum adsorption capacity of suspended solids to phosphorus was 0.073-1.776 mg·g-1. These results indicated that the increase of suspended solids concentration due to the heavy rainfall of the typhoon promoted the adsorption of suspended solids to phosphorus, which reduced eutrophication in Gaozhou Reservoir.


Subject(s)
Drinking Water/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , China , Cyclonic Storms , Geologic Sediments , Rain
6.
Chemosphere ; 194: 107-116, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29197813

ABSTRACT

In early January 2012, the Longjiang River was subjected to a serious cadmium (Cd) pollution accident, which led to negatively environmental and social impacts. A series of measures of emergency treatment were subsequently taken to reduce water Cd level. However, little information was available about the change of Cd level in environmental matrices and long-term effect of this pollution accident to aquatic ecosystem. Thus, this study investigated the distribution of Cd in water and sediment of this river for two years since pollution accident, as well as assessed its ecological risk to aquatic ecosystem of Longjiang River. The results showed that it was efficient for taking emergency treatment measures to decrease water Cd concentration to below the threshold value of national drinking water quality standard of China. There was high risk (HQ > 1) to aquatic ecosystem in some of reaches between February and July 2012, but low or no risk (HQ < 1) between December 2012 to December 2013. Cd concentration in sediment in polluted reaches increased after pollution accident and emergency treatments in 2012, but decreased in 2013. During flood period, the sediment containing high concentration of Cd in Longjiang River was migrated to downstream Liujiang River. Cd content in sediment was reduced to background level after two years of the pollution accident occurrence. The study provides basic information about Cd levels in different media after pollution accident, which is helpful in evaluating the effectiveness of emergency treatments and the variation of ecological risk, as well as in conducting water management and conservation.


Subject(s)
Cadmium/analysis , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Quality , Accidents , China , Ecosystem , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment
7.
Sci Total Environ ; 593-594: 310-318, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28346904

ABSTRACT

In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (dva) in the size range of 0.2-2µm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles.

8.
Huan Jing Ke Xue ; 38(10): 4141-4150, 2017 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-29965197

ABSTRACT

Large-scale cyanobacteria bloom occurred in the summer of 2014 in the Guishi Reservoir that is an important drinking water source for Hezhou City. The dynamic change regularity, external pollution sources, and the phytoplankton community characteristics during the bloom were investigated to evaluate the eutrophication in the reservoir and to present effective prevention and control measures. The results showed that nitrogen and phosphorus concentrations increased year by year; water quality on some sites has been out of class Ⅱ of national water quality standards; and the main pollution source was the agricultural non-point sources. Phytoplankton cell density was in the range of 8.60×106-5.36×108 cells·L-1 and chlorophyll a concentrations reached 74.48 µg·L-1 during the bloom. The dominant species was Microcystis wesenbergii whose density reached 5.36×108 cells·L-1. The cell density decreased over time and concentrated on the surface and at the depth of 2 m underwater. The total phytoplankton cell density was strongly correlated to total phosphorus, total nitrogen, nitrate nitrogen, and the permanganate index, and was inversely correlated to transparency. The water in the Guishi Reservoir was not polluted by microcystic toxins. Moreover, Guishi Reservoir is in a meso-eutrophic state; therefore, the prevention and control of the cyanobacteria bloom should focus on weather conditions and on reducing the input of nitrogen and phosphorus to keep the nutrient levels low.


Subject(s)
Cyanobacteria/growth & development , Drinking Water/microbiology , Eutrophication , Phytoplankton/growth & development , China , Chlorophyll A/analysis , Nitrogen/analysis , Phosphorus/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...