Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e22455, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034738

ABSTRACT

Revealing system behavior from observed time series is a fundamental problem worthy of in-depth study and exploration, and has attracted extensive attention in a wide range of fields due to its wide application values. In this paper, we propose a novel network construction method for time series analysis, which is different from the existing ordinal network method concerning the transition probability of ordinal patterns in transition networks. The proposed network representation is based on the combinatorial property concerning the inversion number of ordinal patterns from the ordinal partitions of time series. For the proposed network construction method, the network nodes are represented by each ordinal partition of time series and the edge weight between network nodes is determined by a novel proximity relationship of ordinal patterns which is a newly defined metric based on the inversion number of ordinal patterns. Using random signals and chaotic signals as examples, we demonstrate the potential of the proposed network construction method for the network representation of time series. We also employ the proposed network construction method in quantitative EEG for the identification of three different physiological and pathological brain states. According to the results of AUC values, one can observe that the discriminating power of the AND of the proposed network construction method is slightly stronger than that of the available ordinal network. The experimental results illustrate that our proposed network construction method opens up a new pathway for network representation of time series, which is capable of quantifying time series for feature extraction and pattern learning for time series analysis.

2.
Entropy (Basel) ; 23(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34441124

ABSTRACT

It is well known that there may be significant individual differences in physiological signal patterns for emotional responses. Emotion recognition based on electroencephalogram (EEG) signals is still a challenging task in the context of developing an individual-independent recognition method. In our paper, from the perspective of spatial topology and temporal information of brain emotional patterns in an EEG, we exploit complex networks to characterize EEG signals to effectively extract EEG information for emotion recognition. First, we exploit visibility graphs to construct complex networks from EEG signals. Then, two kinds of network entropy measures (nodal degree entropy and clustering coefficient entropy) are calculated. By applying the AUC method, the effective features are input into the SVM classifier to perform emotion recognition across subjects. The experiment results showed that, for the EEG signals of 62 channels, the features of 18 channels selected by AUC were significant (p < 0.005). For the classification of positive and negative emotions, the average recognition rate was 87.26%; for the classification of positive, negative, and neutral emotions, the average recognition rate was 68.44%. Our method improves mean accuracy by an average of 2.28% compared with other existing methods. Our results fully demonstrate that a more accurate recognition of emotional EEG signals can be achieved relative to the available relevant studies, indicating that our method can provide more generalizability in practical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...