Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(8): 9357-9374, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434814

ABSTRACT

The escalating menace of multidrug-resistant (MDR) pathogens necessitates a paradigm shift from conventional antibiotics to innovative alternatives. Antimicrobial peptides (AMPs) emerge as a compelling contender in this arena. Employing in silico methodologies, we can usher in a new era of AMP discovery, streamlining the identification process from vast candidate sequences, thereby optimizing laboratory screening expenditures. Here, we unveil cutting-edge machine learning (ML) models that are both predictive and interpretable, tailored for the identification of potent AMPs targeting World Health Organization's (WHO) high-priority pathogens. Furthermore, we have developed ML models that consider the hemolysis of human erythrocytes, emphasizing their therapeutic potential. Anchored in the nuanced physical-chemical attributes gleaned from the three-dimensional (3D) helical conformations of AMPs, our optimized models have demonstrated commendable performance-boasting an accuracy exceeding 75% when evaluated against both low-sequence-identified peptides and recently unveiled AMPs. As a testament to their efficacy, we deployed these models to prioritize peptide sequences stemming from PEM-2 and subsequently probed the bioactivity of our algorithm-predicted peptides vis-à-vis WHO's priority pathogens. Intriguingly, several of these new AMPs outperformed the native PEM-2 in their antimicrobial prowess, thereby underscoring the robustness of our modeling approach. To elucidate ML model outcomes, we probe via Shapley Additive exPlanations (SHAP) values, uncovering intricate mechanisms guiding diverse actions against bacteria. Our state-of-the-art predictive models expedite the design of new AMPs, offering a robust countermeasure to antibiotic resistance. Our prediction tool is available to the public at https://ai-meta.chem.ncu.edu.tw/amp-meta.

2.
PLoS One ; 12(1): e0170025, 2017.
Article in English | MEDLINE | ID: mdl-28114321

ABSTRACT

Because the prognosis of melanoma is challenging and inaccurate when using current clinical approaches, clinicians are seeking more accurate molecular markers to improve risk models. Accordingly, we performed a survival analysis on 404 samples from The Cancer Genome Atlas (TCGA) cohort of skin cutaneous melanoma. Using our recently developed gene network model, we identified biological signatures that confidently predict the prognosis of melanoma (p-value < 10-5). Our model predicted 38 cases as low-risk and 54 cases as high-risk. The probability of surviving at least 5 years was 64% for low-risk and 14% for high-risk cases. In particular, we found that the overexpression of specific genes in the mitotic cell cycle pathway and the underexpression of specific genes in the interferon pathway are both associated with poor prognosis. We show that our predictive model assesses the risk more accurately than the traditional Clark staging method. Therefore, our model can help clinicians design treatment strategies more effectively. Furthermore, our findings shed light on the biology of melanoma and its prognosis. This is the first in vivo study that demonstrates the association between the interferon pathway and the prognosis of melanoma.


Subject(s)
Interferons/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Gene Expression Profiling , Humans , Melanoma/pathology , Prognosis , Skin Neoplasms/pathology , Survival Analysis , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL
...