Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(38)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35705025

ABSTRACT

Carbon quantum dots are widely used in various fields owing to excellent optical properties and outstanding biocompatibility. We synthesize rare super body-centered cubic (C8) structured carbon quantum dots by using cheap source materials and simple preparation method. They exhibit one shifting blue emission band and two close immobile green bands. They have large Stokes shifts ranging from 0.68 to 1.01 eV and large quantum yields as high as 60%. The three types of emissions are competitive and their intensities vary sensitively and differently with pH. Moreover, their emission intensity versus excitation power curves followI(P)∝Pkwithkvalues significantly smaller than unity. The blue emission follows the stretched exponential decay law with an intermediate lifetime of ∼3.9 ns and a lifetime-dispersion factor of ∼0.85 whereas the two green emissions exhibit faster and slower decays with respective lifetimes of around 2.0 and 13.0 ns. The results reveal that the blue emission originates from an ensemble of emission sites exhibiting quantum confinement-like effect and two green emissions stem from pH-sensitive surface functional groups-associated fluorophores.

2.
Nanotechnology ; 31(50): 505712, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33021232

ABSTRACT

Nanodiamonds are popular biological labels because of their superior mechanical and optical properties. Their surfaces bridging the core and surrounding medium play a key role in determining their bio-linkage and photophysical properties. n-diamond is a mysterious carbon allotrope whose crystal structure remains debated. We study the influence of the crystallization temperature on the fluorescence properties of the colloidal n-diamond quantum dots (n-DQDs) with sizes of several nanometers. They exhibit multiband fluorescence across the whole visible region which depends sensitively on the crystallization temperature. Their surfaces turn from hydrophobic ones rich of sp2-bonded carbon into hydrophilic ones rich of carboxyl derivatives and hydroxyl groups as the crystallization temperature increases. The different surface states correlated with the surface structures account for the distinct fluorescence properties of the n-DQDs crystallized at different temperatures. These high-purity ultrasmall n-DQDs with tunable surface chemistry and fluorescence properties are promising multicolor biomarkers and lighting sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...