Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Anal Chem ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004816

ABSTRACT

Emerging point-of-care testing methods are extremely beneficial for personalized assessments of trace element metabolism including selenium (Se). Given the lack of timely evaluation methods for well-received Se fortification, an electrochemical solution was developed based on the recently identified urinary selenosugar (Sel) as a marker. The Se content of crude urine was rapidly determined (∼5 min), and the square-wave voltammetric responses of a Se-selective probe (SeSE) composed of liquid metal amalgam demonstrated comparable performance (e.g., detection limit: 19 nM) to central lab benchtop equipment within the physiological range. Meanwhile, SeSE enabled total urinary Se detection via a mere one-step oxidation. Additionally, SeSE was utilized to jointly assess the apparent internalization and utilization rate of two typical nutrients, selenite and selenomethionine, in a rat nutrition model, demonstrating consistent results with those obtained by HPLC-MS and ICP-MS. Upon systematic standardization directed by Ramaley's theory, SeSE was integrated into a battery-operated portable kit (dubbed "SeEye") with a micro electrochemical drive and tablet PC console for one-stop service trials in a local commercial scenario. This study establishes (1) a nutritive value classifier in a low-cost consumer electronic format and (2) noninvasive diagnostic technology for Se supplementation.

2.
J Nanobiotechnology ; 22(1): 392, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965606

ABSTRACT

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.


Subject(s)
Aptamers, Nucleotide , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Receptors, Transferrin , Animals , Humans , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Receptors, Transferrin/metabolism , Mice , Cell Line, Tumor , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Cell Proliferation/drug effects , Genetic Therapy/methods , RNA, Small Interfering/pharmacology , Mice, Nude
3.
World J Clin Cases ; 12(20): 4427-4433, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015910

ABSTRACT

BACKGROUND: Benign recurrent intrahepatic cholestasis (BRIC) is a rare autosomal recessive disorder, characterized by episodes of intense pruritus, elevated serum levels of alkaline phosphatase and bilirubin, and near-normal -glutamyl transferase. These episodes may persist for weeks to months before spontaneously resolving, with patients typically remaining asymptomatic between occurrences. Diagnosis entails the evaluation of clinical symptoms and targeted genetic testing. Although BRIC is recognized as a benign genetic disorder, the triggers, particularly psychosocial factors, remain poorly understood. CASE SUMMARY: An 18-year-old Chinese man presented with recurrent jaundice and pruritus after a cold, which was exacerbated by self-medication involving vitamin B and paracetamol. Clinical and laboratory evaluations revealed elevated levels of bilirubin and liver enzymes, in the absence of viral or autoimmune liver disease. Imaging excluded biliary and pancreatic abnormalities, and liver biopsy demonstrated centrilobular cholestasis, culminating in a BRIC diagnosis confirmed by the identification of a novel ATP8B1 gene mutation. Psychological assessment of the patient unveiled stress attributable to academic and familial pressures, regarded as potential triggers for BRIC. Initial relief was observed with ursodeoxycholic acid and cetirizine, followed by an adjustment of the treatment regimen in response to elevated liver enzymes. The patient's condition significantly improved following a stress-related episode, thanks to a comprehensive management approach that included psychosocial support and medical treatment. CONCLUSION: Our research highlights genetic and psychosocial influences on BRIC, emphasizing integrated diagnostic and management strategies.

4.
JACS Au ; 4(6): 2323-2334, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38938798

ABSTRACT

Hepatitis B virus (HBV) infection remains a major global health concern, necessitating the development of sensitive and reliable diagnostic methods. In this study, we propose a novel approach to enhance the sensitivity of HBV DNA detection by leveraging a concentration imbalance-driven DNA circuit (CIDDC) as an operational amplifier, coupled with a hybridization-responsive DNA-templated silver nanocluster (DNA-AgNCs) nanoprobe named Q·C6-AgNCs. The CIDDC system effectively converts and amplifies the input HBV DNA into an enriched generic single-stranded DNA output, which subsequently triggers the fluorescence of the DNA-AgNCs reporter upon hybridization, generating a measurable signal for detection. By incorporating the DNA circuit, we not only achieved enhanced sensitivity with a lower detection limit of 0.11 nM but also demonstrated high specificity with single-base mismatch discriminability for HBV DNA detection. Additionally, this mix-and-detect assay format is simple, user-friendly, and isothermal. This innovative strategy holds promise for advancing molecular diagnostics and facilitating the effective management of HBV-related diseases.

5.
Small Methods ; : e2301634, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517273

ABSTRACT

Developing a standardized screening tool for the detection of early and small hepatocellular carcinoma (HCC) through urinary metabolic analysis poses a challenging yet intriguing research endeavor. In this study, a range of intricately interlaced 2D rough nanosheets featuring well-defined sharp edges is fabricated, with the aim of constructing diverse trimetal oxide heterojunctions exhibiting multiscale structures. By carefully engineering synergistic effects in composition and structure, including improved adsorption, diffusion, and other surface-driven processes, the optimized heterojunctions demonstrate a substantial enhancement in signal intensity compared to monometallic or bimetallic oxides, as well as fragmented trimetallic oxides. Additionally, optimal heterojunctions enable the extraction of high-quality urinary metabolic fingerprints using high-throughput mass spectrometry. Leveraging machine learning, discrimination of HCC patients from high-risk and healthy populations achieves impressive performance, with area under the curve values of 0.940 and 0.916 for receiver operating characteristic and precision-recall curves, respectively. Six crucial metabolites are identified, enabling accurate detection of early, small-tumor, alpha-fetoprotein-negative HCC (93.3%-97.3%). A comprehensive screening strategy tailored to clinical reality yields precision metrics (accuracy, precision, recall, and F1 score) exceeding 95.0%. This study advances the application of cutting-edge matrices-based metabolic phenotyping in practical clinical diagnostics.

6.
Anal Chem ; 95(39): 14797-14804, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37737115

ABSTRACT

Given the lack of timely evaluation of the well-received selenium fortification, a neat lateral-flow chromatographic solution was constructed here by using the recently identified urinary selenosugar (Sel) as a strongly indicative marker. As there are no ready-made receptors for this synthetic standard, phenylboronic acid (PBA) esterification and Dolichos biflorus agglutinin (DBA) affinity joined up to pinch and pin down the analyte into a sandwich-type glycol complex. Pilot lectin screening on homemade glycan microarrays verified such a new pairing between dual recognizers as PBA-Sel-DBA with a firm monosaccharide-binding constant. To quell the sample autofluorescence, europium nanoparticles with efficient long-life afterglow were employed as conjugating probes under 1 µs excitation. After systematic process optimizations, the prepared Sel-dipstick achieved swift and sensitive fluorometry over the physiological level of the target from 0.1 to 10 µM with a detection limit down to 0.06 µM. Further efforts were made to eliminate matrix effects from both temperature and pH via an approximate formula. Upon completion, the test strips managed to quantify the presence of Sel in not just imitated but real human urine, with comparable results to those in the references. As far as we know, this would be the first in-house prototype for user-friendly and facile diagnosis of Se nutrition with fair accuracy as well as selectivity. Future endeavors will be invested to model a more traceable Se-supplementary plan based on the rhythmic feedback of Sel excretion.


Subject(s)
Metal Nanoparticles , Selenium , Humans , Europium , Point-of-Care Systems , Chromatography
7.
Biosensors (Basel) ; 13(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37185524

ABSTRACT

Polynucleotide kinase (PNK) is a key enzyme that is necessary for ligation-based DNA repair. The activity assay and inhibitor screening for PNK may contribute to the prediction and improvement of tumor treatment sensitivity, respectively. Herein, we developed a simple, low-background, and label-free method for both T4 PNK activity detection and inhibitor screening by combining a designed ligation-triggered T7 transcriptional amplification system and a crafty light-up malachite green aptamer. Moreover, this method successfully detected PNK activity in the complex biological matrix with satisfactory outcomes, indicating its great potential in clinical practice.


Subject(s)
Biosensing Techniques , Polynucleotide 5'-Hydroxyl-Kinase , Bacteriophage T4 , Rosaniline Dyes , Oligonucleotides , Biosensing Techniques/methods
8.
Hepatology ; 78(5): 1433-1447, 2023 11 01.
Article in English | MEDLINE | ID: mdl-36800849

ABSTRACT

BACKGROUND AND AIMS: Liver fibrosis is a leading indicator for increased mortality and long-term comorbidity in NASH. Activation of HSCs and excessive extracellular matrix production are the hallmarks of liver fibrogenesis. Tyrosine kinase receptor (TrkB) is a multifunctional receptor that participates in neurodegenerative disorders. However, paucity of literature is available about TrkB function in liver fibrosis. Herein, the regulatory network and therapeutic potential of TrkB were explored in the progression of hepatic fibrosis. METHODS AND RESULTS: The protein level of TrkB was decreased in mouse models of CDAHFD feeding or carbon tetrachloride-induced hepatic fibrosis. TrkB suppressed TGF-ß-stimulated proliferation and activation of HSCs in 3-dimensional liver spheroids and significantly repressed TGF-ß/SMAD signaling pathway either in HSCs or in hepatocytes. The cytokine, TGF-ß, boosted Nedd4 family interacting protein-1 (Ndfip1) expression, promoting the ubiquitination and degradation of TrkB through E3 ligase Nedd4-2. Moreover, carbon tetrachloride intoxication-induced hepatic fibrosis in mouse models was reduced by adeno-associated virus vector serotype 6 (AAV6)-mediated TrkB overexpression in HSCs. In addition, in murine models of CDAHFD feeding and Gubra-Amylin NASH (GAN), fibrogenesis was reduced by adeno-associated virus vector serotype 8 (AAV8)-mediated TrkB overexpression in hepatocytes. CONCLUSION: TGF-ß stimulated TrkB degradation through E3 ligase Nedd4-2 in HSCs. TrkB overexpression inhibited the activation of TGF-ß/SMAD signaling and alleviated the hepatic fibrosis both in vitro and in vivo . These findings demonstrate that TrkB could be a significant suppressor of hepatic fibrosis and confer a potential therapeutic target in hepatic fibrosis.


Subject(s)
Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Transforming Growth Factor beta , Animals , Mice , Carbon Tetrachloride , Hepatic Stellate Cells/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Receptor Protein-Tyrosine Kinases , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Ubiquitin-Protein Ligases/metabolism , Smad Proteins/genetics , Smad Proteins/metabolism
9.
Ann Transl Med ; 10(11): 631, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35813333

ABSTRACT

Background: Yinzhihuang (YZH) oral liquid is a traditional Chinese medicine compound that has emerged as a promising therapeutic agent for non-alcoholic fatty liver disease (NAFLD). Here, we aimed to investigate the therapeutic effects of YZH on non-alcoholic steatohepatitis (NASH) and elucidate its underlying molecular mechanisms. Methods: Mice fed on a high-fat diet plus fructose/glucose drinking water (HFGD) were treated with YZH (30 mL/kg/d). The effects of YZH on mice with NASH were assessed through serological analysis and histological examination. Microbiota analysis based on 16S ribosomal ribonucleic acid (16S rRNA) and intestinal mucosal barrier function, serum inflammatory factors, hepatic macrophage infiltration, as well as hepatic toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa B (NFκB) pathway were carried out to explore the mechanism of YZH for treatment of NASH. Results: Results of the current study found that YZH effectively reduced body weight gain and adiposity and alleviated hepatocyte steatosis, hepatocyte ballooning, liver tissue lobular inflammation, as well as fibrosis. It also reduced the accumulation of triglycerides, cholesterol, and free fatty acids in the liver of the treated mice and normalized serum aspartate transaminase, alanine transaminase, and glucose levels as well as lipid metabolism. Meanwhile, YZH treatment significantly decreased the abundance of harmful bacteria, such as Mucispirillum, Helicobacter, and Desulfovibrionaceae. Mechanistically, the present study found that YZH upregulated the expression of tight junction proteins, decreased serum lipopolysaccharide, interleukin 6, and tumor necrosis factor α levels, and increased interleukin 10 levels in serum. In the liver, YZH alleviated macrophage infiltration, especially that of pro-inflammatory macrophages. Moreover, it was found that YZH inhibited the canonical TLR4, MyD88, NFκB signaling pathway. Conclusions: In conclusion, YZH may be a new agent for the prevention of NASH. Further, YZH alleviates gut microbiota dysbiosis, restores the intestinal mucosal barrier, and inhibits the canonical TLR4, MyD88, NFκB signaling pathway.

11.
J Hepatol ; 75(6): 1420-1433, 2021 12.
Article in English | MEDLINE | ID: mdl-34453962

ABSTRACT

BACKGROUND & AIMS: Therapeutic targeting of injuries that require transient restoration of proteins by mRNA delivery is an attractive approach that, until recently, has remained poorly explored. In this study, we examined the therapeutic utility of mRNA delivery for liver fibrosis and cirrhosis. Specifically, we aimed to demonstrate the therapeutic efficacy of human hepatocyte nuclear factor alpha (HNF4A) mRNA in mouse models of fibrosis and cirrhosis. METHODS: We investigated restoration of hepatocyte functions by HNF4A mRNA transfection in vitro, and analyzed the attenuation of liver fibrosis and cirrhosis in multiple mouse models, by delivering hepatocyte-targeted biodegradable lipid nanoparticles (LNPs) encapsulating HNF4A mRNA. To identify potential mechanisms of action, we performed microarray-based gene expression profiling, single-cell RNA sequencing, and chromatin immunoprecipitation. We used primary liver cells and human liver buds for additional functional validation. RESULTS: Expression of HNF4A mRNA led to restoration of the metabolic activity of fibrotic primary murine and human hepatocytes in vitro. Repeated in vivo delivery of LNP-encapsulated HNF4A mRNA induced a robust inhibition of fibrogenesis in 4 independent mouse models of hepatotoxin- and cholestasis-induced liver fibrosis. Mechanistically, we discovered that paraoxonase 1 is a direct target of HNF4A and it contributes to HNF4A-mediated attenuation of liver fibrosis via modulation of liver macrophages and hepatic stellate cells. CONCLUSION: Collectively, our findings provide the first direct preclinical evidence of the applicability of HNF4A mRNA therapeutics for the treatment of fibrosis in the liver. LAY SUMMARY: Liver fibrosis and cirrhosis remain unmet medical needs and contribute to high mortality worldwide. Herein, we take advantage of a promising therapeutic approach to treat liver fibrosis and cirrhosis. We demonstrate that restoration of a key gene, HNF4A, via mRNA encapsulated in lipid nanoparticles decreased injury in multiple mouse models of fibrosis and cirrhosis. Our study provides proof-of-concept that mRNA therapy is a promising strategy for reversing liver fibrosis and cirrhosis.


Subject(s)
Hepatocyte Nuclear Factor 4/pharmacology , Liver Cirrhosis/drug therapy , Animals , Disease Models, Animal , Hepatocyte Nuclear Factor 4/therapeutic use , Mice , RNA, Messenger/pharmacology , RNA, Messenger/therapeutic use
12.
Front Oncol ; 11: 653902, 2021.
Article in English | MEDLINE | ID: mdl-33928038

ABSTRACT

Hepatocellular carcinoma (HCC) as a main type of primary liver cancers has become one of the most deadly tumors because of its high morbidity and poor prognosis. Fucoidan is a family of natural, heparin-like sulfated polysaccharides extracted from brown algae. It is not only a widely used dietary supplement, but also participates in many biological activities, such as anti-oxidation, anti-inflammation and anti-tumor. However, the mechanism of fucoidan induced inhibition of HCC is elusive. In our study, we demonstrated that fucoidan contributes to inhibiting cell proliferation in vivo and in vitro, restraining cell motility and invasion and inducing cell cycle arrest and apoptosis. According to High-Throughput sequencing of long-non-coding RNA (lncRNA) in MHCC-97H cells treated with 0.5 mg/mL fucoidan, we found that 56 and 49 lncRNAs were correspondingly up- and down-regulated. LINC00261, which was related to the progression of tumor, was highly expressed in fucoidan treated MHCC-97H cells. Moreover, knocking down LINC00261 promoted cell proliferation by promoting the expression level of miR-522-3p, which further decreased the expression level of downstream SFRP2. Taken together, our results verified that fucoidan effectively inhibits the progression of HCC via causing lncRNA LINC00261 overexpression.

13.
World J Gastroenterol ; 26(27): 3917-3928, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32774066

ABSTRACT

BACKGROUND: Chronic hepatitis B virus (HBV) infection is a leading cause of liver morbidity and mortality worldwide. Liver fibrosis resulting from viral infection-associated inflammation and direct liver damage plays an important role in disease management and prognostication. The mechanisms underlying the contribution of the liver microenvironment to fibrosis in HBV patients are not fully understood. There is an absence of effective clinical treatments for liver fibrosis progression; thus, establishing a suitable in vitro microenvironment in order to design novel therapeutics and identify molecular biomarkers to stratify patients is urgently required. AIM: To examine a subset of pre-selected microenvironment factors of chronic HBV patients that may underlie fibrosis, with a focus on fibroblast activation. METHODS: We examined the gene expression of key microenvironment factors in liver samples from patients with more advanced fibrosis compared with those with less severe fibrosis. We also used the human stellate cell line LX-2 in the in vitro study. Using different recombinant cytokines and growth factors or their combination, we studied how these factors interacted with LX-2 cells and pinpointed the cross-talk between the aforementioned factors and screened the most important factors. RESULTS: Of the secreted factors examined, transforming growth factor (TGF)-ß1, interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were increased in patients with advanced fibrosis. We found that besides TGF-ß1, IL-1ß can also induce a profibrotic cascade by stimulating the expression of connective tissue growth factor and platelet-derived growth factor (PDGF) in LX-2 cells. Furthermore, the proinflammatory response can be elicited in LX-2 cells following treatment with IL-1ß and TNF-α, suggesting that stellate cells can respond to proinflammatory stimuli. By combining IL-1ß and TGF-ß1, we observed not only fibroblast activation as shown by αlpha-smooth muscle actin and PDGF induction, but also the inflammatory response as shown by increased expression of IL-1ß. CONCLUSION: Collectively, our data from HBV patients and in vitro studies demonstrate that the hepatic microenvironment plays an important role in mediating the crosstalk between profibrotic and proinflammatory responses and modulating fibrosis in chronic HBV patients. For the establishment of a suitable in vitro microenvironment for HBV-induced liver fibrosis, not only TGF-ß1 but also IL-1ß should be considered as a necessary environmental factor.


Subject(s)
Hepatitis B, Chronic , Liver Cirrhosis , Adult , Female , Hepatic Stellate Cells/pathology , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/pathology , Humans , Liver Cirrhosis/pathology , Male , Middle Aged , Platelet-Derived Growth Factor , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha
14.
Cancer Med ; 9(15): 5546-5557, 2020 08.
Article in English | MEDLINE | ID: mdl-32485786

ABSTRACT

BACKGROUND: Galangin has been extensively studied as the antitumor agent in various cancers. However, the effect of galangin in hepatocellular carcinoma (HCC) remains elusive. METHODS: Using RNA sequencing, the differential expression of lncRNA in human HCC cell line with highly metastatic potential (MHCC97H) cells treated with galangin was investigated. Furthermore, H19 expression pattern was also determined in MHCC97H cells following treatment with galangin. In addition, knockdown and overexpression of H19 was performed to analyze the effect of the expression pattern of H19 on cell apoptosis, cell cycle, migration, and invasion in HCC cells. Moreover, the in vivo effect of galangin on tumor development was also determined in nude mice. In order to analyze loss expression of H19 in vivo, clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) was used. RESULTS: Total of 50 lncRNAs were significantly differentially expressed in MHCC97H cells treated with galangin. Besides, the expression of H19 was markedly reduced following treatment with galangin in MHCC97H cells. Compared to the Control group, the galangin-treated group inhibited cell migration and invasion. Knockdown of H19 expression showed increased cell apoptosis and decreased invasion. In addition, RNA-seq data also identified 161 mRNA which was significantly differentially expressed following treatment with galangin. To further determine the underlying mechanism, p53 protein was analyzed. Notably, the results indicated that knockdown of H19 and miR675 induced the expression of p53, eventually promoting cell apoptosis in MHCC97H cells. These results indicated that galangin promoted cell apoptosis through reduced the expression of H19 and miR675 in MHCC97H cells. The in vivo result showed that compared to the Con, tumor growth was remarkably suppressed with loss expression of H19. CONCLUSION: Our data suggested that galangin has a crucial role in hepatocarcinogenesis through regulating the expression pattern of H19.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression/genetics , Liver Neoplasms/genetics , RNA, Long Noncoding/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Flavonoids/pharmacology , Humans , Liver Neoplasms/pathology , Mice , Mice, Nude , Transfection
15.
Onco Targets Ther ; 13: 3277-3287, 2020.
Article in English | MEDLINE | ID: mdl-32368086

ABSTRACT

OBJECTIVE: Ten-eleven translocation (TET) enzymes that oxidize a 5-methylcytosine (5mC) to yield 5-hydroxymethylcytosine (5hmC) have been responsible for fine-tuning methylation patterns and exhibit role in epigenetic modifications. Chrysin, a natural flavone frequently present in honey, has been recognized to exhibit anti-tumor properties. In this study, we investigated the effects of Chrysin in the expression pattern of TET proteins in gastric cancer (GC) cells. MATERIALS AND METHODS: Using qRT-PCR and Western blot analysis, we analyzed the expression of TET1 in GC cells in vitro following treatment with Chrysin. Immunofluorescence staining detected the expression levels of 5mC and 5hmC. Flow cytometry, wound healing, and Matrigel invasion assays were performed to determine cell proliferation, cell cycle, apoptosis, and migration and invasion of GC cells following treatment with Chrysin, si-TET1, and TET1-KO. Furthermore, a xenograft model was developed to analyze the expression pattern of TET1 on tumor development in vivo. RESULTS: qRT-PCR and Western blot assays indicated that treatment with Chrysin significantly promoted the expression of TET1 in GC cells. Immunofluorescence study further confirmed that TET1 and 5hmC levels were significantly enhanced following treatment with Chrysin in MKN45 cells. Moreover, our results suggested that Chrysin could noticeably induce cell apoptosis and inhibit cell migration and invasion. Further, knockdown and overexpression of TET1 were conducted to investigate whether TET1 expression affected cell apoptosis, and cell migration and invasion in MKN45 cells. The results indicated that overexpression of TET1 markedly promoted cell apoptosis and inhibited cell migration and invasion. Furthermore, the TET1 gene knocked out was generated using the CRISPR/Cas9 system. Our data suggested that TET1 expression was associated with GC tumor growth in vivo. CONCLUSION: This study indicated that Chrysin exerted anti-tumor effects through the regulation of TET1 expression in GC and presented TET1 as a novel promising therapeutic target for GC therapy.

16.
Ann Transl Med ; 8(5): 231, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32309378

ABSTRACT

BACKGROUND: Yin Zhi Huang (YZH) is a formula composed of Artemisia scoparia, Gardeniae fructus, Scutellaria baicalensis Georgi, and Lonicerae Japonicae Flos. Most of the components are eaten as food in Asia. Here, we evaluated the role of YZH on a high-fat diet (HFD)-induced obesity and hepatic steatosis. METHODS: Male C57BL/6J mice were fed with normal-chow diet, HFD, and HFD with low- or high-dose YZH for 16 weeks. Body weight gain, adipose mass, and plasma lipids levels were measured to evaluate the effect of YZH on obesity. Liver weight and staining methods on liver tissues were used to determine hepatic steatosis. The expression of involved genes and proteins were screened with qRT-PCR and immunoblotting, respectively. RESULTS: The results showed that YZH significantly reduced body weight gain, adipose mass, and the size of adipocytes, while did not affect food intake in HFD-fed mice. H&E staining, bodipy staining, and oil red O staining displayed that YZH alleviates hepatic lipid accumulation. It also effectively restored elevated plasma levels of triglycerides (TG), total cholesterol (TC), alanine aminotransferase, and aspartate aminotransferase in HFD-fed mice. Mechanistically, these effects of YZH have associated with a decrease of AMPK/SREBP-1 pathway-mediated de novo lipogenesis and an increase of AMPK/ACC/CPT1A pathway-mediated mitochondrial fatty acid ß oxidation. CONCLUSIONS: YZH supplementation ameliorated diet-induced obesity and hepatic steatosis by decreasing AMPK/SREBP-1 pathway-mediated de novo lipogenesis and increasing AMPK/ACC/CPT1A pathway-mediated mitochondrial fatty acid ß oxidation.

17.
Front Med (Lausanne) ; 7: 71, 2020.
Article in English | MEDLINE | ID: mdl-32195263

ABSTRACT

This study aimed to investigate the beneficial effects of myricetin in a diet-induced nonalcoholic steatohepatitis (NASH) model and the underlying mechanism. C57BL/6J mice were fed a standard chow or the choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 8 weeks with the treatment of myricetin (100 mg/kg) or vehicle by daily gavage. Hepatic inflammation, steatosis, fibrosis, and hepatic stellate cells (HSC) activation were assessed. We also analyzed M1 and M2 macrophages and its related markers in livers from NASH mice and in RAW264.7 macrophages stimulated by lipopolysaccharide (LPS) or interleukin 4 (IL-4) in vitro. Furthermore, we determined the effect of myricetin on the triggering receptor expressed on myeloid cells-1 (TREM-1), toll like receptor (TLR) 2 and 4, and myeloid differentiation factor 88 (MyD88) signaling both in livers from mice and in RAW264.7 cells stimulated by LPS. Our results revealed that myricetin remarkably ameliorated hepatic steatosis, inflammation, and inhibited hepatic macrophage infiltration in CDAHFD-fed mice. Myricetin-treated to CDAHFD-fed mice also inhibited liver fibrosis and HSC activation when compared with vehicle-treated to those mice. Moreover, myricetin inhibited M1 macrophage polarization and its relative markers in livers of NASH mice while induced M2 polarization. Similarly, in vitro study, myricetin inhibited the LPS-induced mRNA expression of M1 macrophages marker genes and induced IL-4-induced M2 macrophage marker genes in RAW264.7 macrophages. Mechanically, myricetin inhibited the expression of TREM-1 and TLR2/4-MyD88 signaling molecules in livers from NASH mice and in RAW264.7 macrophages stimulated by LPS in vitro. Additionally, myricetin inhibited the activation of nuclear factor (NF)-κB signaling and the phosphorylation of the signal transducer and activation of transcription 3 (STAT3) in LPS-stimulated RAW264.7 macrophages. Taken together, our data indicated that myricetin modulated the polarization of macrophages via inhibiting the TREM-1-TLR2/4-MyD88 signaling molecules in macrophages and therefore mitigated NASH and hepatic fibrosis in the CDAHFD-diet-induced NASH model in mice.

18.
Front Pharmacol ; 10: 1089, 2019.
Article in English | MEDLINE | ID: mdl-31616301

ABSTRACT

This study aims to investigate the protective effects of morin hydrate (MH) against acute liver injury induced by carbon tetrachloride (CCl4) in mice and to elucidate the possible molecular mechanism of action. Mice were pretreated with MH (50 mg/kg body weight) or vehicle by oral gavage once daily for 5 days, followed by intraperitoneal injection of a single dose of CCl4 (1 ml/kg in olive oil). Mice were sacrificed 24 h later; the blood and liver samples were harvested for analysis. We also used the model of lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in vitro and examined the effects of MH and its mechanism of action on the inflammatory response. Our results revealed that MH remarkably attenuated liver histopathological alterations, serum transaminases, hepatocytes death, and inflammatory response induced by CCl4. Importantly, MH reduced expression of the triggering receptor expressed on myeloid cells-1 (TREM-1) and toll-like receptor 4 (TLR4) both in vivo and in vitro experiments. This inhibitory effect MH on expression of the TREM-1 and TLR4 in cell culture was further heightened after TREM-1 knockdown with small interfering RNA (siRNA). Moreover, MH dramatically suppressed the inhibitor of kappa B α (IκBα) degradation and subsequent nuclear factor-kappa B (NF-κB) p65 translocation into the nucleus and NF-κB-mediated cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, and IL-6. Additionally, MH also ameliorated CCl4-induced oxidative stress by enhancing the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in the injured livers. Taken together, MH has hepatoprotective activity, and this effect may be elicited by attenuating macrophage-mediated inflammatory responses via inhibition TREM-1/TLR4/NF-κB signaling and by regulating hepatic oxidative stress via enhancement Nrf2/HO-1 antioxidant pathway.

19.
Cell Signal ; 58: 1-8, 2019 06.
Article in English | MEDLINE | ID: mdl-30711634

ABSTRACT

Epithelial-mesenchymal transition (EMT) has emerged as a vital process in embryogenesis, carcinogenesis, and tissue fibrosis. Transforming growth factor-beta 1 (TGF-ß1)-mediated signaling pathways play important roles in the EMT process. MicroRNA-146a (miR-146a) has been suggested as a significant regulatory molecule in fibrogenesis. Therefore, the present study aimed to evaluate the effect of miR-146a on the EMT of hepatocytes and to investigate the role of overexpressing miR-146a on rat hepatic fibrosis. The results showed that the miR-146a level decreased during the EMT process of L02 hepatocytes induced by TGF-ß1 in vitro. Moreover, miR-146a overexpression led to significant reduction of EMT-related markers expression in hepatocytes. Subsequent experiments revealed that miR-146a attenuated the EMT process in hepatocytes by targeting small mothers against decapentaplegic (SMAD) 4. Meanwhile, restoration of SMAD4 expression rescued the inhibitory effect of miRNA-146a on EMT. Further in vivo studies revealed that intravenous injection of miR-146a-expressing adenovirus (Ad-miR-146a) successfully restored the miR-146a levels and mitigated fibrogenesis in the livers of CCl4-treated rats. More importantly, after Ad-miR-146a treatment, inhibition of both EMT traits and SMAD4 expression was observed. The results of the present study showed that miR-146a/SMAD4 is a key signaling cascade that inhibits hepatocyte EMT, and the introduction of miR-146a might present a promising therapeutic option for liver fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Hepatocytes/pathology , Liver Cirrhosis/genetics , MicroRNAs/genetics , Transforming Growth Factor beta1/genetics , Animals , Cell Line , Down-Regulation , Hepatocytes/metabolism , Humans , Liver Cirrhosis/pathology , Male , Rats , Rats, Sprague-Dawley , Smad4 Protein/genetics , Up-Regulation
20.
Front Pharmacol ; 9: 72, 2018.
Article in English | MEDLINE | ID: mdl-29497376

ABSTRACT

At present, there are no effective antifibrotic drugs for patients with chronic liver disease; hence, the development of antifibrotic therapies is urgently needed. Here, we performed an experimental and translational study to investigate the potential and underlying mechanism of quercetin treatment in liver fibrosis, mainly focusing on the impact of quercetin on macrophages activation and polarization. BALB/c mice were induced liver fibrosis by carbon tetrachloride (CCl4) for 8 weeks and concomitantly treated with quercetin (50 mg/kg) or vehicle by daily gavage. Liver inflammation, fibrosis, and hepatic stellate cells (HSCs) activation were examined. Moreover, massive macrophages accumulation, M1 macrophages and their related markers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and monocyte chemotactic protein-1 (MCP-1) in livers were analyzed. In vitro, we used Raw 264.7 cells to examine the effect of quercetin on M1-polarized macrophages activation. Our results showed that quercetin dramatically ameliorated liver inflammation, fibrosis, and inhibited HSCs activation. These results were attributed to the reductive recruitment of macrophages (F4/80+ and CD68+) into the liver in quercetin-treated fibrotic mice confirmed by immunostaining and expression levels of marker molecules. Importantly, quercetin strongly inhibited M1 polarization and M1-related inflammatory cytokines in fibrotic livers when compared with vehicle-treated mice. In vitro, studies further revealed that quercetin efficiently inhibited macrophages activation and M1 polarization, as well as decreased the mRNA expression of M1 macrophage markers such as TNF-α, IL-1ß, IL-6, and nitric oxide synthase 2. Mechanistically, the inhibition of M1 macrophages by quercetin was associated with the decreased levels of Notch1 expression on macrophages both in vivo and in vitro. Taken together, our data indicated that quercetin attenuated CCl4-induced liver inflammation and fibrosis in mice through inhibiting macrophages infiltration and modulating M1 macrophages polarization via targeting Notch1 pathway. Hence, quercetin holds promise as potential therapeutic agent for human fibrotic liver disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...