Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 261: 232-239, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29673991

ABSTRACT

Sequence batch reactors (SBR) with simultaneous feeding/draw mode and low-strength wastewater were used for the cultivation of aerobic granules, and analysis of bacterial community diversity were conducted. Results revealed that the ratio of chemical oxygen demand/total nitrogen removal amount for R1 with real wastewater and R2 with synthetic wastewater decreased from 9.9 to 8.7 and, 29.9 to 21.1, respectively, when volumetric exchange ratio (VER) decreased from 90% (stage I) to 50% (stage II), indicating that organic matter in real and low-strength wastewater was fully utilized with lower VER by denitrifying bacteria. Relative abundances of the genus Dechloromonas, Pseudomonas, Bacillus in R1, which are responsible for denitrifying phosphorus removal, were much higher than that in R2, accounting for the high efficiency of nitrogen and phosphorus removal from real wastewater with low influent C/N ratio of 3.6 on average. These results provide useful information for improving wastewater treatment efficiency in the future.


Subject(s)
Nitrogen/metabolism , Waste Disposal, Fluid , Aerobiosis , Biological Oxygen Demand Analysis , Bioreactors , Phosphorus , Sewage , Wastewater
2.
Environ Technol ; 36(21): 2732-9, 2015.
Article in English | MEDLINE | ID: mdl-26056846

ABSTRACT

Arsenic is known as a toxic element to humans, and has been reported to co-exist with iron and manganese in groundwater worldwide. The typical method for arsenic removal from groundwater is to oxidize trivalent (As(III)) to pentavalent (As(V)) followed by the As(V) removal. This study aims to evaluate the oxidization efficiency of As(III) in a mature biological manganese (Mn(2+)) removal filtration system with different elevated influent As(III) concentrations. The effects of influent Mn(2+) concentrations, influent As(III) concentrations, filtration rates and dissolved oxygen (DO) levels on the efficiency of As(III) oxidation were assessed. The results showed that As(III) oxidation can be simultaneously achieved with removing Mn(2+) in the filtration system. The oxidation efficiency was not impacted by increasing the influent As(III) concentration up to nearly 2500 µg L(-1), but the filtration rate was limited at 11 m h(-1) for maintaining the effluent As(III) concentration below 10 µg L(-1). The oxidation process followed first-order kinetics with the constant reaching 0.56-0.61 min(-1). The As(III) oxidation process was most likely to be mediated by the bacterial community initially developed for Mn(2+) removal in the filtration system, which performed the catalytic oxidation for As(III).


Subject(s)
Arsenic/chemistry , Filtration/instrumentation , Groundwater/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/instrumentation , Arsenic/analysis , Equipment Design , Filtration/methods , Kinetics , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...