Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38869533

ABSTRACT

In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10-11 A vs. 1.66 × 10-12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = -10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V).

2.
Recent Pat Nanotechnol ; 18(2): 117-129, 2024.
Article in English | MEDLINE | ID: mdl-37005510

ABSTRACT

BACKGROUND: Electrochromic materials can dynamically change their optical properties (such as transmittance, absorbance, and reflectance under the action of an applied voltage, and their research and application in the visible band have been widely concerned. In recent years, with the continuous development of electrochromic technology, the related research has been gradually extended to the infrared region. OBJECTIVE: This invited review aims to provide an overview of the current status of several inorganic infrared electrochromic materials, to provide some references for future research, and to promote the research and application of electrochromic technology in the infrared region. METHODS: This review summarizes various research results in the field of infrared electrochromic, which includes a detailed literature review and patent search. Starting from the key performance parameters and device structure characteristics of infrared electrochromic devices (ECDs), the research and progress of several types of inorganic infrared electrochromic materials, including metal oxides, plasma nanocrystals, and carbon nanomaterials, are mainly presented, and feasible optimization directions are also discussed. CONCLUSION: We believe that the potential of these materials for civilian and military applications, for example, infrared electrochromic smart windows, infrared stealth/disguise, and thermal control of spacecraft, can be fully exploited by optimizing the materials and their devices to improve their performance.

3.
J Phys Chem Lett ; 14(43): 9677-9682, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37870981

ABSTRACT

In this report, an ammonium metatungstate (AMT) and ferrous chloride [Fe(II)Cl2] electrochromic liquid (ECL) was synthesized using a hydrothermal method, with D2O used as the solvent instead of H2O. The results show that the use of D2O can improve the stability and performance of ECLs. The hydrogen evolution process in electrochromic devices (ECDs) filled with ECL becomes more difficult, while the material exchange process becomes easier. The ECD exhibits a color modulation amplitude of 58%@680 nm at 2 V. After 500 cycles, the device's performance remains above 95% at a current density of 1.5 mA/cm2. Hydrogen bonds in D2O solutions are expected to exhibit stronger forces compared to those in regular H2O solutions. Therefore, we hypothesize that enhancing the strength of hydrogen bonds in H2O solutions is an effective approach for improving the performance and stability of electrochromic solutions.

4.
J Phys Chem Lett ; 14(41): 9245-9249, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37812073

ABSTRACT

In recent years, more and more attention has been paid to flexible thin-film transistors (TFTs). Therefore, we combined HfMgTiYZrOx high-entropy metal oxide and poly(vinyl alcohol) (PVA) organic material to prepare a flexible dielectric layer. We fabricated metal-insulator-metal (MIM) and TFT devices and carried out flexible tests. The test results show that the mixed dielectric layer attains a leakage current of 3.6 × 10-11 A under the bending radius of 5 mm. In the application of the TFT, the device still has good performance after 10 000 bends with a mobility of 3.1 cm2 V-1 s-1, an Ion/Ioff of 1.4 × 107, a threshold voltage of 3.3 V, and a threshold swing of 0.20 V/decade. In addition, the average transmittance of the hybrid dielectric layer in the visible range is 90.8%. Therefore, high-entropy PVA hybrid films have high transparency, low leakage current, and good bending resistance and have broad application prospects in transparent and flexible devices.

5.
Langmuir ; 39(19): 6803-6811, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37126220

ABSTRACT

A printable, flexible display panel is an important trend in the field of information display, which requires better mechanical and electrical properties of device materials. Polymer-metal oxide composite materials are promising in the functional layer of a thin-film transistor (TFT) and can be sufficiently fabricated by polymer-metal salt solution systems through the sol-gel process. For the development of polymer-metal oxide composite ink, it is necessary to study the film-forming mechanism of the composite film during solidification, which is an important reference in ink component design. However, the evolution of the composite structure is quite complex, which brings a challenge to characterization and analyzation. We applied a series of characterization methods to study the film-forming process of composite ink from sol to gel and to solid, and an emerging testing technology, nano-infrared spectroscopy (nano-IR), was applied to characterize the gel film. The research conclusion showed that the type of functional group can significantly affect the morphology of the initial particle and can finally determine the microstructure of the composite film. The study provides references for the development of composite ink as well as the characterization method for ink and film with complex composition.

6.
ACS Appl Mater Interfaces ; 15(2): 3621-3632, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598168

ABSTRACT

Microelectronic devices are developing rapidly in portability, wearability, and implantability. This puts forward an urgent requirement for the delicate deposition process of materials. Electrohydrodynamic printing has attracted academic and industrial attention in preparing ultrahigh-density microelectronic devices as a new noncontact, direct graphic, and low-loss thin film deposition process. In this work, a printed graphene with narrow line width is realized by combining the electrohydrodynamic printing and surface treatment. The line width of printed graphene on the hydrophobic treatment surface reduced from 80 to 28 µm. The resistivity decreased from 0.949 to 0.263 Ω·mm. Unexpectedly, hydrophobic treatment can effectively induce random stacking of electrohydrodynamic printed graphene, which avoids parallel stacking and agglomeration of graphene sheets. The performance of printed graphene is thus effectively improved. After optimization, a graphene planar supercapacitor with a printed line width of 28 µm is successfully obtained. Its capacitance can reach 5.39 mF/cm2 at 50 mV/s, which is twice higher than that of the untreated devices. The device maintains 84.7% capacitance after 5000 cycles. This work provides a reference for preparing microelectronic devices by ultrahigh precision printing and a new direction for optimizing two-dimensional material properties through stacking adjustment.

7.
Membranes (Basel) ; 12(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36363594

ABSTRACT

Electrochromic materials have been considered as a new way to achieve energy savings in the building sector due to their potential applications in smart windows, cars, aircrafts, etc. However, the high cost of manufacturing ECDs using the conventional manufacturing methods has limited its commercialization. It is the advantages of low cost as well as resource saving, green environment protection, flexibility and large area production that make printing electronic technology fit for manufacturing electrochromic devices. This paper reviews the progress of research on printed electrochromic devices (ECDs), detailing the preparation of ECDs by screen printing, inkjet printing and 3D printing, using the scientific properties of discrete definition printing method. Up to now, screen printing holds the largest share in the electrochromic industry due to its low cost and large ink output nature, which makes it suitable especially for printing on large surfaces. Though inkjet printing has the advantages of high precision and the highest coloration efficiency (CE) can be up to 542 ± 10 cm2C-1, it has developed smoothly, and has not shown rigid needs. Inkjet printing is suitable for the personalized printing production of high precision and small batch electronic devices. Since 3D printing is a new manufacturing technology in the 21st century, with the characteristics of integrated molding and being highly controllable, which make it suitable for customized printing of complex devices, such as all kinds of sensors, it has gained increasing attention in the past decade. Finally, the possibility of combining screen printing with inkjet printing to produce high performance ECDs is discussed.

8.
Polymers (Basel) ; 14(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36080744

ABSTRACT

Flexible electronic technology is one of the research hotspots, and numerous wearable devices have been widely used in our daily life. As an important part of wearable devices, flexible sensors can effectively detect various stimuli related to specific environments or biological species, having a very bright development prospect. Therefore, there has been lots of studies devoted to developing high-performance flexible pressure sensors. In addition to developing a variety of materials with excellent performances, the microstructure designs of materials can also effectively improve the performances of sensors, which has brought new ideas to scientists and attracted their attention increasingly. This paper will summarize the flexible pressure sensors based on material microstructure designs in recent years. The paper will mainly discuss the processing methods and characteristics of various sensors with different microstructures, and compare the advantages, disadvantages, and application scenarios of them. At the same time, the main application fields of flexible pressure sensors based on microstructure designs will be listed, and their future development and challenges will be discussed.

9.
Micromachines (Basel) ; 13(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36014270

ABSTRACT

Even though electrochromism has been around for more than 50 years, it still has several issues. Multi-layered films, high manufacturing costs, and a short lifetime are present in existing electrochromic devices. We demonstrate a unique high-performance device with a basic structure and no solid electrochromic sheets in this work. In this device, the electrolyte layer is also avoided. The device uses an electrochromic solution prepared from a mixture of ammonium metatungstate and iron (II) chloride solution as a functional layer with reversible redox properties. The tungstate ions on the electrode surface are reduced when the device is colored, and the Fe2+ on the electrode surface is oxidized on another electrode surface. The generated Fe3+ in the mixed functional layer oxidizes the previously reduced tungstate ions as the device fades. We determined the ΔT (transmittance modulation) and response time among ammonium metatungstate ratios, iron (II) chloride ratios, and driven current density using DOE (design of experiment) trials. Using 0.175 mol/L ammonium metatungstate and 0.30 mol/L iron (II) chloride, a device with outstanding ΔT (more than 57% at 700 nm), a short response time (less than 10 s), and high coloring efficiency (160.04 cm2/C at 700 nm) is demonstrated.

10.
Langmuir ; 38(32): 9955-9966, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35894171

ABSTRACT

The unbalanced evaporation of solvents in low-temperature sintered inks for printed electronics leads to a series of problems in the actual printing process, including printed pattern distortion, surface cracking, and the coffee ring effect, which has become a serious obstacle to this technique. Here, we present a comprehensive investigation of the influence of the solvent composition, environmental, and sintering conditions on the complicated pattern formation process of reactive silver inks. The results first showed that only inks with a certain wettability of solvents could form well-defined patterns. Then, the solvent composition and ambient humidity can be adjusted to balance the nonequilibrium evaporative flow within the liquid and thus to obtain a flat liquid film. Combined with the rapid UV sintering process, the particle size, porosity, and roughness could be controlled to produce dense and homogeneous silver films. Finally, we successfully printed silver electrodes with a smooth and dense surface (Rqs ∼ 21 nm in 0.8 × 0.8 mm2 area and less than 1% porosity) under an optimized relative humidity (RH) of 50-60% at room temperature with the solvent composition of IPA (isopropanol)/2,3-BD (2,3-butanediol) = 8:2. In addition, we also demonstrated high-performance Pr-IZO (praseodymium-doped indium-zinc oxide) thin film transistors (TFTs) with a mobility (µsat) of 2.14 cm2/V/s and Ion/Ioff ratio of over 107 using source-drain electrodes printed under optimized conditions.

11.
Membranes (Basel) ; 12(7)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35877844

ABSTRACT

Capacitors play an increasingly important role in hybrid integrated circuits, while the MIM capacitors with high capacitance density and small thickness can meet the needs of high integration. Generally speaking, the films prepared with a single metal oxide dielectric often achieve a breakthrough in one aspect of performance, but dielectric layers are required to be improved to get better performance in leakage current, capacitance density, and transmittance simultaneously in modern electronic devices. Therefore, we optimized the performance of the dielectric layers by using multiple metal oxides. We combined zirconia, yttria, magnesium oxide, alumina, and hafnium oxide with the solution method to find the best combination of these five metal oxides. The physical properties of the multi-component films were measured by atomic force microscopy (AFM), ultraviolet-visible spectrophotometer, and other instruments. The results show that the films prepared by multi-component metal oxides have good transmittance and low roughness. The thicknesses of all films in our experiment are less than 100 nm. Then, metal-insulator-metal (MIM) devices were fabricated. In addition, we characterized the electrical properties of MIM devices. We find that multi-component oxide films can achieve good performances in several aspects. The aluminum-magnesium-yttrium-zirconium-oxide (AMYZOx) group of 0.6 M has the lowest leakage current density, which is 5.03 × 10-8 A/cm2 @ 1.0 MV/cm. The hafnium-magnesium-yttrium-zirconium-oxide (HMYZOx) group of 0.8 M has a maximum capacitance density of 208 nF/cm2. The films with a small thickness and a high capacitance density are very conducive to high integration. Therefore, we believe that multi-component films have potential in the process of dielectric layers and great application prospects in highly integrated electronic devices.

12.
Membranes (Basel) ; 12(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35736297

ABSTRACT

Recently, tin oxide (SnO2) has been the preferred thin film material for semiconductor devices such as thin-film transistors (TFTs) due to its low cost, non-toxicity, and superior electrical performance. However, the high oxygen vacancy (VO) concentration leads to poor performance of SnO2 thin films and devices. In this paper, with tetraethyl orthosilicate (TEOS) as the Si source, which can decompose to release heat and supply energy when annealing, Si doped SnO2 (STO) films and inverted staggered STO TFTs were successfully fabricated by a solution method. An XPS analysis showed that Si doping can effectively inhibit the formation of VO, thus reducing the carrier concentration and improving the quality of SnO2 films. In addition, the heat released from TEOS can modestly lower the preparation temperature of STO films. By optimizing the annealing temperature and Si doping content, 350 °C annealed STO TFTs with 5 at.% Si exhibited the best device performance: Ioff was as low as 10-10 A, Ion/Ioff reached a magnitude of 104, and Von was 1.51 V. Utilizing TEOS as an Si source has a certain reference significance for solution-processed metal oxide thin films in the future.

13.
Membranes (Basel) ; 12(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35207062

ABSTRACT

Over the past few decades, electrohydrodynamic (EHD) printing has proved to be an environmentally friendly, cost-effective and powerful tool in manufacturing electronic devices with a wire width of less than 50 µm. In particular, EHD printing is highly valued for the printing of ultrafine wire-width silver electrodes, which is important in manufacturing large-area, high-resolution micron-scale or even nanoscale structures. In this paper, we compare two methods of surface modification of glass substrate: UV treatment and oxygen plasma treatment. We found that oxygen plasma was better than UV treatment in terms of wettability and uniformity. Secondly, we optimized the annealing temperature parameter, and found that the conductivity of the electrode was the highest at 200 °C due to the smoothing silver electrode and the oxidation-free internal microstructure. Thirdly, we used EHD printing to fabricate silver electrodes on the glass substrate. Due to the decrease of conductivity as a result of the skin effect and the decrease of silver content, we found that driving voltage dropped, line width decreased, and the conductivity of silver line decreased. After the optimization of the EHD printing process, Ag electrode line width and conductivity reached 19.42 ± 0.24 µm and 6.01 × 106 S/m, demonstrating the potential of electro-hydraulic printing in the manufacturing of flexible, wearable, high-density, low-power-consumption electronics.

14.
Micromachines (Basel) ; 12(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34945352

ABSTRACT

The active layer of metal oxide semiconductor thin film transistor (MOS-TFT) prepared by solution method, with the advantages of being a low cost and simple preparation process, usually needs heat treatment to improve its performance. Laser treatment has the advantages of high energy, fast speed, less damage to the substrate and controllable treatment area, which is more suitable for flexible and large-scale roll-to-roll preparation than thermal treatment. This paper mainly introduces the basic principle of active layer thin films prepared by laser treatment solution, including laser photochemical cracking of metastable bonds, laser thermal effect, photoactivation effect and laser sintering of nanoparticles. In addition, the application of laser treatment in the regulation of MOS-TFT performance is also described, including the effects of laser energy density, treatment atmosphere, laser wavelength and other factors on the performance of active layer thin films and MOS-TFT devices. Finally, the problems and future development trends of laser treatment technology in the application of metal oxide semiconductor thin films prepared by solution method and MOS-TFT are summarized.

15.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34835811

ABSTRACT

Silver nanowire (AgNW) conductive film fabricated by solution processing was investigated as an alternative to indium tin oxide (ITO) in flexible transparent electrodes. In this paper, we studied a facile and effective method by electrodepositing Al2O3 on the surface of AgNWs. As a result, flexible transparent electrodes with improved stability could be obtained by electrodepositing Al2O3. It was found that, as the annealing temperature rises, the Al2O3 coating layer can be transformed from Al2O3·H2O into a denser amorphous state at 150 °C. By studying the increase of electrodeposition temperature, it was observed that the transmittance of the AgNW-Al2O3 composite films first rose to the maximum at 70 °C and then decreased. With the increase of the electrodeposition time, the figure of merit (FoM) of the composite films increased and reached the maximum when the time was 40 s. Through optimizing the experimental parameters, a high-stability AgNW flexible transparent electrode using polyimide (PI) as a substrate was prepared without sacrificing optical and electrical performance by electrodepositing at -1.1 V and 70 °C for 40 s with 0.1 mol/L Al(NO3)3 as the electrolyte, which can withstand a high temperature of 250 °C or 250,000 bending cycles with a bending radius of 4 mm.

16.
Micromachines (Basel) ; 12(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34577688

ABSTRACT

The praseodymium-doped indium-zinc-oxide (PrIZO) thin film transistor (TFT) shows broad application prospects in the new generation of display technologies due to its high performance and high stability. However, traditional device performance evaluation methods need to be carried out after the end of the entire preparation process, which leads to the high-performance device preparation process that takes a lot of time and costs. Therefore, there is a lack of effective methods to optimize the device preparation process. In this paper, the effect of sputtering oxygen partial pressure on the properties of PrIZO thin film was studied, and the quality of PrIZO thin film was quickly evaluated by the microwave photoconductivity decay (µ-PCD) method. The µ-PCD results show that as the oxygen partial pressure increases, the peak first increases and then decreases, while the D value shows the opposite trend. The quality of PrIZO thin film prepared under 10% oxygen partial pressure is optimal due to its low localized defect states. The electric performance of PrIZO TFTs prepared under different oxygen partial pressures is consistent with the µ-PCD results. The optimal PrIZO TFT prepared under 10% oxygen partial pressure exhibits good electric performance with a threshold voltage (Vth) of 1.9 V, a mobility (µsat) of 24.4 cm2·V-1·s-1, an Ion/Ioff ratio of 2.03 × 107, and a subthreshold swing (SS) of 0.14 V·dec-1.

17.
Membranes (Basel) ; 11(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34436371

ABSTRACT

Amorphous metal oxide has been a popular choice for thin film material in recent years due to its high uniformity. The dielectric layer is one of the core materials of the thin film transistor (TFT), and it affects the ability of charges storage in TFT. There is a conflict between a high relative dielectric constant and a wide band gap, so we solved this problem by using multiple metals to increase the entropy of the system. In this paper, we prepared zirconium-yttrium-aluminum-magnesium-oxide (ZYAMO) dielectric layers with a high relative dielectric constant using the solution method. The basic properties of ZYAMO films were measured by an atomic force microscope (AFM), an ultraviolet-visible spectrophotometer (UV-VIS), etc. It was observed that ZYAMO thin films had a larger optical band when the annealing temperature increased. Then, metal-insulator-metal (MIM) devices were fabricated to measure the electrical properties. We found that the leakage current density of the device is relatively lower and the ZYAMO thin film had a higher relative dielectric constant as the concentration went up. Finally, it reached a high relative dielectric constant of 56.09, while the leakage current density was no higher than 1.63 × 10-6 A/cm2@ 0.5 MV/cm at 1.0 M and 400 °C. Therefore, the amorphous ZYAMO thin films has a great application in the field of high permittivity request devices in the future.

18.
Langmuir ; 37(19): 5979-5985, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33961745

ABSTRACT

Polymer/oxide hybrid thin films, which have excellent electrical and mechanical performance, can be effectively fabricated through the sol-gel process, showing great potential in the future printed electronics. However, gelation of polymer/oxide ink systems can easily occur during a thermal process in which case capillary stress can lead to the crack of printed films due to the long period of stress accumulation. To solve this problem, the effect of different solvent systems on formed PAM/ZrOx hybrid films, which were printed by piezoelectric printing, was studied in this paper, including single solvent systems of glycol and binary solvent systems of glycol and water. The result showed that the microstructure characteristics and mechanical properties of hybrid nanostructures formed in different solvent systems varied significantly, and crack behavior can be regulated by simply adjusting the water volume ratio of the solvent system. The crack formation was significantly inhibited when the water volume ratio reached 25%.

19.
Membranes (Basel) ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946591

ABSTRACT

High-performance amorphous oxide semiconductor thin film transistors (AOS-TFT) with copper (Cu) electrodes are of great significance for next-generation large-size, high-refresh rate and high-resolution panel display technology. In this work, using rare earth dopant, neodymium-doped indium-zinc-oxide (NdIZO) film was optimized as the active layer of TFT with Cu source and drain (S/D) electrodes. Under the guidance of the Taguchi orthogonal design method from Minitab software, the semiconductor characteristics were evaluated by microwave photoconductivity decay (µ-PCD) measurement. The results show that moderate oxygen concentration (~5%), low sputtering pressure (≤5 mTorr) and annealing temperature (≤300 °C) are conducive to reducing the shallow localized states of NdIZO film. The optimized annealing temperature of this device configuration is as low as 250 °C, and the contact resistance (RC) is modulated by gate voltage (VG) instead of a constant value when annealed at 300 °C. It is believed that the adjustable RC with VG is the key to keeping both high mobility and compensation of the threshold voltage (Vth). The optimal device performance was obtained at 250 °C with an Ion/Ioff ratio of 2.89 × 107, a saturation mobility (µsat) of 24.48 cm2/(V·s) and Vth of 2.32 V.

20.
Research (Wash D C) ; 2021: 5758435, 2021.
Article in English | MEDLINE | ID: mdl-33842892

ABSTRACT

Flexible thin-film transistors with high current-driven capability are of great significance for the next-generation new display technology. The effect of a Cu-Cr-Zr (CCZ) copper alloy source/drain (S/D) electrode on flexible amorphous neodymium-doped indium-zinc-oxide thin-film transistors (NdIZO-TFTs) was investigated. Compared with pure copper (Cu) and aluminum (Al) S/D electrodes, the CCZ S/D electrode changes the TFT working mode from depletion mode to enhancement mode, which is ascribed to the alloy-assisted interface layer besides work function matching. X-ray photoelectron spectroscopy (XPS) depth profile analysis was conducted to examine the chemical states of the contact interface, and the result suggested that chromium (Cr) oxide and zirconium (Zr) oxide aggregate at the interface between the S/D electrode and the active layer, acting as a potential barrier against residual free electron carriers. The optimal NdIZO-TFT exhibited a desired performance with a saturation mobility (µ sat) of 40.3 cm2·V-1·s-1, an I on/I off ratio of 1.24 × 108, a subthreshold swing (SS) value of 0.12 V·decade-1, and a threshold voltage (V th) of 0.83 V. This work is anticipated to provide a novel approach to the realization of high-performance flexible NdIZO-TFTs working in enhancement mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...