Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(27): 39155-39176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809406

ABSTRACT

An in-depth understanding of nitrate-contaminated surface water and groundwater quality and associated risks is important for groundwater management. Hydrochemical characteristics and driving forces of groundwater quality and non-carcinogenic risks of nitrate were revealed by the integrated approaches of self-organizing map analysis, spatial visualization by geography information system, entropy and irrigation water quality indices, and human health risk model. Groundwater samples were categorized into two clusters by SOM analysis. Cluster I including three samples were Ca-SO4 type and cluster II of remaining 136 samples were Ca-HCO3 type. Hydrochemical compositions of two cluster samples were dominated by water-rock interaction: (1) calcite and gypsum dissolution for cluster I samples and (2) calcite dissolution, silicate weathering, and positive cation exchange for cluster II samples. Nitrate contamination occurred in both cluster I and II samples, primarily induced by agricultural nitrogen fertilizer. The EWQI results showed that 90.97% in total groundwater samples were suitable for drinking purpose, while the IWQI results demonstrated that 65.03% in total groundwater samples were appropriate for irrigation purpose. The HHR model and Monte Carlo simulation indicated that the non-carcinogenic nitrated risk was highest in children. Exposure frequency was the most sensitive factor (86.33% in total) influencing the total non-carcinogenic risk, indicated by sensitivity analysis. Compared with the two clusters of groundwater, surface water has a shorter circulation cycle and lower ion concentrations resulting in better water quality. This study can provide scientific basis for groundwater quality evaluation in other parts of the world.


Subject(s)
Agricultural Irrigation , Groundwater , Machine Learning , Spatial Analysis , Water Pollutants, Chemical , Water Quality , Groundwater/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Drinking Water/chemistry , Humans , Environmental Monitoring/methods , Nitrates/analysis
2.
Sci Total Environ ; 935: 173276, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38796023

ABSTRACT

Identifying the natural background levels (NBLs), threshold values (TVs), sources and health risks of potentially toxic elements in groundwater is crucial for ensuring the water security of residents in highly urbanized areas. In this study, 96 groundwater samples were collected in urban area of Sichuan Basin, SW China. The concentrations of potentially toxic elements (Li, Fe, Cu, Zn, Al, Pb, B, Ba and Ni) were analyzed for investigating the NBLs, TVs, sources and health risks. The potentially toxic elements followed the concentration order of Fe > Ba > B > Al > Zn > Li > Cu > Ni > Pb. The NBLs and TVs indicated the contamination of potentially toxic elements mainly occurred in the northern and central parts of the study area. The Positive Matrix Factorization (PMF) model identified elevated concentrations of Fe, Al, Li, and B were found to determine groundwater quality. The primary sources of Fe, Al, Pb, and Ni were attributed to the dissolution of oxidation products, with Fe additionally affected by anthropogenic reduction environments. Li and B were determined to be originated from the weathering of tourmaline. High levels of Ni and Cu concentrations were derived from electronic waste leakage, while excessive Ba and Zn were linked to factory emissions and tire wear. The reasonable maximum exposure (RME) of hazard index (HI) was higher than safety standard and reveal the potential health risks in the southwestern study area. Sensitivity analysis demonstrated the Li concentrations possessed the highest weight contributing to health risk. This study provides a valuable information for source-specific risk assessments of potentially toxic elements in groundwater associated with urban areas.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis , China , Risk Assessment , Urbanization , Humans , Metals, Heavy/analysis , Cities
3.
J Contam Hydrol ; 259: 104256, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37865976

ABSTRACT

Groundwater is the foremost water source in the arid and semiarid regions of Northwest China. Assessing groundwater's drinking and irrigation quality is essential for protecting these valuable groundwater resources. In this study, a total of 24 confined groundwater samples and 54 phreatic groundwater samples were collected in the southern and central Ningxia area for hydrochemical analysis and quality assessment. The hydrochemical results revealed that hydrochemical types of phreatic and confined groundwater consistently belonged to Na-SO4-Cl and Na-Mg-SO4-Cl types. The driving forces of groundwater chemistry were determined by gypsum dissolution, silicate dissolution, and positive cation exchange for phreatic and confined aquifers. The entropy-weighted water quality index (EWQI) and irrigation water quality index (IWQI) showed that the drinking water quality and irrigation quality were better in phreatic groundwater than in confined groundwater due to the Neogene-Paleogene groundwater system recharge and strong evaporation. Measures such as controlling groundwater extraction and optimizing well placement need to be implemented. The achievements would be helpful for groundwater management and protection in agricultural areas under semi-arid and arid climates.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Water Pollutants, Chemical/analysis , Groundwater/analysis , Water Quality , China , Agricultural Irrigation
SELECTION OF CITATIONS
SEARCH DETAIL
...