Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5043, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36977727

ABSTRACT

In this paper, the newly developed Fractal-Fractional derivative with power law kernel is used to analyse the dynamics of chaotic system based on a circuit design. The problem is modelled in terms of classical order nonlinear, coupled ordinary differential equations which is then generalized through Fractal-Fractional derivative with power law kernel. Furthermore, several theoretical analyses such as model equilibria, existence, uniqueness, and Ulam stability of the system have been calculated. The highly non-linear fractal-fractional order system is then analyzed through a numerical technique using the MATLAB software. The graphical solutions are portrayed in two dimensional graphs and three dimensional phase portraits and explained in detail in the discussion section while some concluding remarks have been drawn from the current study. It is worth noting that fractal-fractional differential operators can fastly converge the dynamics of chaotic system to its static equilibrium by adjusting the fractal and fractional parameters.

2.
Math Biosci Eng ; 18(5): 5392-5408, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34517493

ABSTRACT

In this paper, we present a detailed study of the following system of difference equations% \begin{equation*} x_{n+1}=\frac{a}{1+y_{n}x_{n-1}},\ y_{n+1}=\frac{b}{1+x_{n}y_{n-1}},\ n\in\mathbb{N}_{0}, \end{equation*}% where the parameters $a$, $b$, and the initial values $x_{-1},~x_{0},\ y_{-1},~y_{0}$ are arbitrary real numbers such that $x_{n}$ and $y_{n}$ are defined. We mainly show by using a practical method that the general solution of the above system can be represented by characteristic zeros of the associated third-order linear equation. Also, we characterized the well-defined solutions of the system. Finally, we study long-term behavior of the well-defined solutions by using the obtained representation forms.

3.
Math Biosci Eng ; 18(4): 4390-4401, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34198443

ABSTRACT

In this paper, new criteria for oscillation of neutral delay differential equations of second-order are presented. One objective of this study is to complement and extend some well-known related results in the literature. To support our main results, we give illustrating examples.

4.
Results Phys ; 27: 104248, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33996398

ABSTRACT

Coronavirus (COVID-19) outbreak from Wuhan, Hubei province in China and spread out all over the World. In this work, a new mathematical model is proposed. The model consists the system of ODEs. The developed model describes the transmission pathways by employing non constant transmission rates with respect to the conditions of environment and epidemiology. There are many mathematical models purposed by many scientists. In this model, " α E " and " α I ", transmission coefficients of the exposed cases to susceptible and infectious cases to susceptible respectively, are included. " δ " as a governmental action and restriction against the spread of coronavirus is also introduced. The RK method of order four (RK4) is employed to solve the model equations. The results are presented for four countries i.e., Pakistan, Italy, Japan, and Spain etc. The parametric study is also performed to validate the proposed model.

5.
Results Phys ; 23: 103968, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33654656

ABSTRACT

The current work is of interest to introduce a detailed analysis of the novel fractional COVID-19 model. Non-local fractional operators are one of the most efficient tools in order to understand the dynamics of the disease spread. For this purpose, we intend as an attempt at investigating the fractional COVID-19 model through Caputo operator with order χ ∈ ( 0 , 1 ) . Employing the fixed point theorem, it is shown that the solutions of the proposed fractional model are determined to satisfy the existence and uniqueness conditions under the Caputo derivative. On the other hand, its iterative solutions are indicated by making use of the Laplace transform of the Caputo fractional operator. Also, we establish the stability criteria for the fractional COVID-19 model via the fixed point theorem. The invariant region in which all solutions of the fractional model under investigation are positive is determined as the non-negative hyperoctant R + 7 . Moreover, we perform the parameter estimation of the COVID-19 model by utilizing the non-linear least squares curve fitting method. The sensitivity analysis of the basic reproduction number R 0 c is carried out to determine the effects of the proposed fractional model's parameters on the spread of the disease. Numerical simulations show that all results are in good agreement with real data and all theoretical calculations about the disease.

6.
Materials (Basel) ; 13(18)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906693

ABSTRACT

The current work deals with the study of a thermo-piezoelectric modified model in the context of generalized heat conduction with a memory-dependent derivative. The investigations of the limited-length piezoelectric functionally graded (FGPM) rod have been considered based on the presented model. It is assumed that the specific heat and density are constant for simplicity while the other physical properties of the FGPM rod are assumed to vary exponentially through the length. The FGPM rod is subject to a moving heat source along the axial direction and is fixed to zero voltage at both ends. Using the Laplace transform, the governing partial differential equations have been converted to the space-domain, and then solved analytically to obtain the distributions of the field quantities. Numerical computations are shown graphically to verify the effect of memory presence, graded material properties, time-delay, Kernel function, and the thermo-piezoelectric response on the physical fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...