Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(12): 9488-9499, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38450544

ABSTRACT

There are numerous defects existing on the surface and grain boundary of perovskite, which adversely affect the performance and stability of perovskite solar cell devices. Systematic first-principles calculations show that the I vacancy (VI), Pb vacancy (VPb), Pb-I antisite (PbI), and I-Pb antisite (IPb) defects can significantly affect the electronic properties of the surface of formamidinium lead triiodide (FAPbI3); in particular the VPb, PbI and IPb surface defects can introduce defect energy levels in the band gap. Tetrahexylammonium iodide (THAI) that is strongly adsorbed on the (1 0 0) surface of FAPbI3 by forming Pb-I coordination bonds and I⋯H hydrogen bonds could eliminate or reduce the defect states near the band edge or in the band gap by transferring electrons between THAI and the surface of FAPbI3. In particular, the defect states introduced by VPb could be completely eliminated after the adsorption of THAI. This study shows an in-depth understanding of the influence of defects on the electronic properties of the surface of FAPbI3, as well as the passivation mechanism of organic salts on the surface defects of perovskite.

2.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37522408

ABSTRACT

Recently, a debate is raising the concern of possible carbonaceous sulfur hydrides with room-temperature superconductivity around 270 GPa. In order to systematically investigate the structural information and relevant natures of C-S-H superconductors, we performed an extremely extensive structure search and first-principles calculations under high pressures. As a result, the metastable stoichiometries of CSH7, C2SH14, CS2H10, and CS2H11 were unveiled under high pressure, which can be viewed as CH4 units inserted into the S-H framework. Given the super-high superconductivity of Im3̄m-SH3, we performed electron-phonon coupling calculations of these compounds,the metastable of R3m-CSH7, Cm-CSH7, Cm-CS2H10, P3m1-CS2H10, Cm-CS2H11, and Fmm2-CS2H11 are predicted to become good phonon-mediated superconductors that could reach Tc of 130, 120, 72, 74, 92, and 70 K at 270 GPa, respectively. Furthermore, we identified that high Tc is associated with the large contribution of the S-H framework to the electron density of states near the Fermi level. Our results highlight the importance of the S-H framework in superconductivity and verify that the suppression of density of states of these carbonaceous sulfur hydrides by CH4 units results in Tc lower than that of Im3̄m-SH3, which could act as a useful guidance in the design and optimization of high-Tc superconductors in these and related systems.

3.
Chemistry ; 29(26): e202203971, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36779632

ABSTRACT

Perovskite nanocrystals (NCs) exhibit attractive photophysical properties by combining the excellent optoelectronic properties of bulk perovskites with the strong quantum confinement effect at the nanoscale. However, CsPbI3 NCs easily transform into a non-perovskite phase because of the ionic lattice and dynamic ligand binding. Herein, stable black-phase CsPbI3 NCs capped with a new organic ligand, HO-PS-N3 (HOPS), which consists of a polystyrene segment with hydroxyl and azide end groups, are reported. This organic polymer ligand passivated the surface defects and enhanced the stability of CsPbI3 NCs by exposing the linking hydrophobic polystyrene segment. Consequently, the optimized CsPbI3 NCs exhibit significantly improved resistance to moisture or light and maintained 70 % of the original luminous intensity after immersion in water for two months. The theoretical results revealed that the binding energy of the HOPS ligand on the surface of the CsPbI3 NCs is higher than that of the commonly used oleic acid, alleviating the defects-induced degradation during purification. Thus, surface-stabilized CsPbI3 NCs are beneficial for a broad range of optoelectronic applications.

4.
Phys Chem Chem Phys ; 24(37): 22746-22755, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36111602

ABSTRACT

Tandem solar cells based on perovskites have been gaining ever-increasing attention for applications in photovoltaics. Here, we stack the wide-bandgap CsPbI3 top subcell with the low-bandgap Kesterite Cu2ZnSnSxSe(4-x) (CZTSSe) bottom subcell mechanically to form a four-terminal tandem solar cell. The thickness of the CsPbI3 and CZTSSe layers, as well as the thickness of ZnO/ZnS and Spiro-OMeTAD layers are optimized to achieve significantly improved absorption, thereby reducing reflection loss and parasitic absorption. The doping concentration on CsPbI3 and CZTSSe is investigated to equalize open-circuit voltage and short-circuit current. The energy band-bending and built-in electrical field correlated with carrier separation are discussed. The simulated four-terminal CsPbI3/CZTSSe tandem solar cell affords a summed PCE of 32.35%. The study of the CsPbI3/CZTSSe tandem solar cell provides a promising reference for designing high-performance devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...