Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cureus ; 13(8): e17595, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34646647

ABSTRACT

Introduction The standard treatment for glioblastoma (GBM) patients is surgical tumor resection, followed by radiation and chemotherapy with temozolomide (TMZ). Unfortunately, 60% of newly diagnosed GBM patients express high levels of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) and are TMZ-resistant, and all patients eventually become refractory to treatment. The blood-brain barrier (BBB) is an obstacle to the delivery of chemotherapeutic agents to GBM, and BBB-permeable agents that are efficacious in TMZ-resistant and refractory patients are needed. The large amino acid transporter 1 (LAT1) is expressed on the BBB and in GBM and is detected at much lower levels in normal brain tissue. A LAT1-selective therapeutic would potentially target brain tumors while avoiding uptake by healthy tissue. Methods We report a novel chemical entity (QBS10072S) that combines a potent cytotoxic chemotherapeutic domain (tertiary N-bis(2-chloroethyl)amine) with the structural features of a selective LAT1 substrate and tested it against GBM models in vitro and in vivo. For in vitro studies, DNA damage was assessed with a gamma H2A.X antibody and cell viability was assessed by WST-1 assay and/or CellTiter-Glo assay. For in vivo studies, QBS10072S (with or without radiation) was tested in orthotopic glioblastoma xenograft models, using overall survival and tumor size (as measured by bioluminescence), as endpoints. Results QBS10072S is 50-fold more selective for LAT1 vs. LAT2 in transport assays and demonstrates significant growth suppression in vitro of LAT1-expressing GBM cell lines. Unlike TMZ, QBS10072S is cytotoxic to cells with both high and low levels of MGMT expression. In orthotopic GBM xenografts, QBS10072S treatment significantly delayed tumorigenesis and prolonged animal survival compared to the vehicle without adverse effects. Conclusion QBS10072S is a novel BBB-permeable chemotherapeutic agent with the potential to treat TMZ-resistant and recurrent GBM as monotherapy or in combination with radiation treatment.

2.
Oncotarget ; 8(1): 583-595, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27611946

ABSTRACT

Activating mutation of BRAF is a common finding in pediatric gliomas. As many as 14% of high grade and up to 66% of certain subtypes of low grade pediatric glioma have the BRAFV600E mutation. Small molecule inhibitors that selectively target BRAFV600E are FDA approved for melanoma and have shown significant efficacy in treating BRAFV600E glioma in pre-clinical trials. Despite showing initial anti-tumor activity, acquired drug resistance significantly limits the benefit from being treated with BRAFV600E inhibitors. Here, we have identified molecular responses to BRAFV600E inhibitor treatment in human glioma models that have substantial clinical implications. Specifically, we show that BRAFV600E inhibitor resistant cells upregulate pro-survival mediators such as Wnt, and additionally increase receptor tyrosine kinase activity, including EGFR and Axl, promoting resistance to BRAFV600E inhibition. Our results suggest strategies to circumvent acquired resistance to BRAFV600E inhibitor therapy, and thereby improve outcomes for patients with BRAFV600E gliomas.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Glioma/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Indoles/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Sulfonamides/pharmacology , ras Proteins/metabolism , Axl Receptor Tyrosine Kinase
3.
Immunol Cell Biol ; 95(5): 443-453, 2017 05.
Article in English | MEDLINE | ID: mdl-27899813

ABSTRACT

Liver fibrosis is a progressive pathological process involving inflammation and extracellular matrix deposition. Dipeptidyl peptidase 4 (DPP4), also known as CD26, is a cell surface glycoprotein and serine protease. DPP4 binds to fibronectin, can inactivate specific chemokines, incretin hormone and neuropeptides, and influences cell adhesion and migration. Such properties suggest a pro-fibrotic role for this peptidase but this hypothesis needs in vivo examination. Experimental liver injury was induced with carbon tetrachloride (CCl4) in DPP4 gene knockout (gko) mice. DPP4 gko had less liver fibrosis and inflammation and fewer B cell clusters than wild type mice in the fibrosis model. DPP4 inhibitor-treated mice also developed less liver fibrosis. DNA microarray and PCR showed that many immunoglobulin (Ig) genes and some metabolism-associated transcripts were differentially expressed in the gko strain compared with wild type. CCl4-treated DPP4 gko livers had more IgM+ and IgG+ intrahepatic lymphocytes, and fewer CD4+, IgD+ and CD21+ intrahepatic lymphocytes. These data suggest that DPP4 is pro-fibrotic in CCl4-induced liver fibrosis and that the mechanisms of DPP4 pro-fibrotic action include energy metabolism, B cells, NK cells and CD4+ cells.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Liver Cirrhosis/enzymology , Liver Cirrhosis/pathology , Liver/enzymology , Liver/injuries , Animals , Carbon Tetrachloride , Cell Line , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Leukocytes/drug effects , Leukocytes/metabolism , Leukocytes/pathology , Liver/pathology , Liver Cirrhosis/genetics , Mice , Mice, Knockout , Phenotype , Spleen/pathology , Up-Regulation
4.
J Neurooncol ; 131(3): 495-505, 2017 02.
Article in English | MEDLINE | ID: mdl-27848137

ABSTRACT

BRAFV600E is a common finding in glioma (about 10-60% depending on histopathologic subclassification). BRAFV600E monotherapy shows modest preclinical efficacy against BRAFV600E gliomas and also induces adverse secondary skin malignancies. Here, we examine the molecular mechanism of intrinsic resistance to BRAFV600E inhibition in glioma. Furthermore, we investigate BRAFV600E/MEK combination therapy that overcomes intrinsic resistance to BRAFV600E inhibitor and also prevents BRAFV600E inhibitor induced secondary malignancies. Immunoblotting and Human Phospho-Receptor Tyrosine Kinase Array assays were used to interrogate MAPK pathway activation. The cellular effect of BRAFV600E and MEK inhibition was determined by WST-1 viability assay and cell cycle analysis. Flanked and orthotopic GBM mouse models were used to investigate the in vivo efficacy of BRAFV600E/MEK combination therapy and the effect on secondary malignancies. BRAFV600E inhibition leads to recovery of ERK phosphorylation. Combined BRAFV600E and MEK inhibition prevents reactivation of the MAPK signaling, which correlates with decreased cell viability and augmented cell cycle arrest. Similarly, mice bearing BRAFV600E glioma showed reduced tumor growth when treated with a combination of BRAFV600E and MEK inhibitor compared to BRAFV600E inhibition alone. Additional benefit of BRAFV600E/MEK inhibition was reflected by reduced cutaneous squamous-cell carcinoma (cSCC) growth (a surrogate for RAS-driven secondary maligancies). In glioma, recovery of MAPK signaling upon BRAF inhibition accounts for intrinsic resistance to BRAFV600E inhibitor. Combined BRAFV600E and MEK inhibition prevents rebound of MAPK activation, resulting in enhanced antitumor efficacy and also reduces the risk of secondary malignancy development.


Subject(s)
Antineoplastic Agents/administration & dosage , Glioma/metabolism , MAP Kinase Signaling System , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Benzamides/administration & dosage , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Diphenylamine/administration & dosage , Diphenylamine/analogs & derivatives , Disease Models, Animal , Female , Glioma/drug therapy , Glioma/genetics , Humans , Indoles/administration & dosage , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred BALB C , Mutation , Proto-Oncogene Proteins B-raf/genetics , Signal Transduction/drug effects , Sulfonamides/administration & dosage , Survival Analysis , Xenograft Model Antitumor Assays
5.
Oncotarget ; 6(26): 21993-2005, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26023796

ABSTRACT

Mutational activation of BRAF(BRAF(V600E)) occurs in pediatric glioma and drives aberrant MAPK signaling independently of upstream cues. Targeted monotherapy against BRAF(V600E) displays efficacy in pre-clinical models of glioma, however xenograft tumors adapt rapidly and escape from the growth-inhibitory effects of BRAF-targeted therapy. Here, we show that intrinsic resistance to a BRAF(V600E) specific inhibitor stems, in part, from feedback activation of EGFR and downstream signaling pathways. BRAF(V600E) inhibition suppresses MAPK signaling, which in turn downregulates the EGFR phosphatase PTPN9, resulting in sustained EGFR phosphorylation and enhanced EGFR activity. We demonstrated that overexpression of PTPN9 reduces EGFR phosphorylation and cooperates with BRAF(V600E) inhibitor PLX4720 to reduce MAPK and Akt signaling, resulting in decreased glioma cell viability. Moreover, pharmacologic inhibition of EGFR combined with inhibition of BRAF(V600E) to reduce growth of glioma cell lines and orthotopic glioma xenograft by decreasing tumor cell proliferation while increasing apoptosis, with resultant significant extension of animal subject survival. Our data support clinical evaluation of BRAF(V600E) and EGFR targeted therapy in treating BRAF(V600E) glioma.


Subject(s)
Brain Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Glioma/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Glioma/enzymology , Glioma/genetics , Glioma/pathology , Humans , Indoles/pharmacology , MAP Kinase Signaling System/drug effects , Mice , Mice, Nude , Molecular Targeted Therapy , Proto-Oncogene Proteins B-raf/genetics , Random Allocation , Signal Transduction , Sulfonamides/pharmacology , Transfection , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 13(12): 2919-29, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25313012

ABSTRACT

This report describes results from our analysis of the activity and biodistribution of a novel pan-ERBB inhibitor, NT113, when used in treating mice with intracranial glioblastoma (GBM) xenografts. Approaches used in this investigation include: bioluminescence imaging (BLI) for monitoring intracranial tumor growth and response to therapy; determination of survival benefit from treatment; analysis of tumor IHC reactivity for indication of treatment effect on proliferation and apoptotic response; Western blot analysis for determination of effects of treatment on ERBB and ERBB signaling mediator activation; and high-performance liquid chromatography for determination of NT113 concentration in tissue extracts from animals receiving oral administration of inhibitor. Our results show that NT113 is active against GBM xenografts in which wild-type EGFR or EGFRvIII is highly expressed. In experiments including lapatinib and/or erlotinib, NT113 treatment was associated with the most substantial improvement in survival, as well as the most substantial tumor growth inhibition, as indicated by BLI and IHC results. Western blot analysis results indicated that NT113 has inhibitory activity, both in vivo and in vitro, on ERBB family member phosphorylation, as well as on the phosphorylation of downstream signaling mediator Akt. Results from the analysis of animal tissues revealed significantly higher NT113 normal brain-to-plasma and intracranial tumor-to-plasma ratios for NT113, relative to erlotinib, indicating superior NT113 partitioning to intracranial tissue compartments. These data provide a strong rationale for the clinical investigation of NT113, a novel ERBB inhibitor, in treating patients with GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Amplification , Glioblastoma/genetics , Quinazolines/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Erlotinib Hydrochloride , Female , Gene Expression , Glioblastoma/drug therapy , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Lapatinib , Mice , Quinazolines/administration & dosage , Tissue Distribution , Xenograft Model Antitumor Assays
7.
Biochim Biophys Acta ; 1844(7): 1248-59, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24717288

ABSTRACT

Fibroblast activation protein (FAP) is a focus of interest as a potential cancer therapy target. This membrane bound protease possesses the unique catalytic activity of hydrolysis of the post-proline bond two or more residues from the N-terminus of substrates. FAP is highly expressed in activated fibroblastic cells in tumours, arthritis and fibrosis. A rare, novel, human polymorphism, C1088T, encoding Ser363 to Leu, occurring in the sixth blade of the ß propeller domain, was identified in a family. Both in primary human fibroblasts and in Ser363LeuFAP transfected cells, we showed that this single substitution ablates FAP dimerisation and causes loss of enzyme activity. Ser363LeuFAP was detectable only in endoplasmic reticulum (ER), in contrast to the distribution of wild-type FAP on the cell surface. The variant FAP showed decreased conformational antibody binding, consistent with an altered tertiary structure. Ser363LeuFAP expression was associated with upregulation of the ER chaperone BiP/GRP78, ER stress sensor ATF6, and the ER stress response target phospho-eIF2α, all indicators of ER stress. Proteasomal inhibition resulted in accumulation of Ser363LeuFAP, indicating the involvement of ER associated degradation (ERAD). Neither CHOP expression nor apoptosis was elevated, so ERAD is probably important for protecting Ser363LeuFAP expressing cells. These data on the first loss of function human FAP gene variant indicates that although the protein is vulnerable to an amino acid substitution in the ß-propeller domain, inactive, unfolded FAP can be tolerated by cells.


Subject(s)
Brachydactyly/genetics , Deafness/genetics , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum-Associated Degradation/genetics , Gelatinases/genetics , Gelatinases/metabolism , Intellectual Disability/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mouth Abnormalities/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Tooth Abnormalities/genetics , Amino Acid Substitution , Apoptosis , Blotting, Western , Case-Control Studies , Cell Membrane/metabolism , Cells, Cultured , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Endopeptidases , Endoplasmic Reticulum Chaperone BiP , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Humans , Immunoenzyme Techniques , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Skin/cytology , Skin/metabolism , Subcellular Fractions
8.
FEBS Open Bio ; 4: 43-54, 2013.
Article in English | MEDLINE | ID: mdl-24371721

ABSTRACT

The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.

9.
World J Gastroenterol ; 19(19): 2883-93, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23704821

ABSTRACT

AIM: To investigate the expression of dipeptidyl peptidase (DPP) 8 and DPP9 in lymphocytes and various models of liver fibrosis. METHODS: DPP8 and DPP9 expression were measured in mouse splenic CD4⁺ T-cells, CD8⁺ T-cells and B-cells (B220⁺), human lymphoma cell lines and mouse splenocytes stimulated with pokeweed mitogen (PWM) or lipopolysaccharide (LPS), and in dithiothreitol (DTT) and mitomycin-C treated Raji cells. DPP8 and DPP9 expression were measured in epidermal growth factor (EGF) treated Huh7 hepatoma cells, in fibrotic liver samples from mice treated with carbon tetrachloride (CCl4) and from multidrug resistance gene 2 (Mdr2/Abcb4) gene knockout (gko) mice with biliary fibrosis, and in human end stage primary biliary cirrhosis (PBC). RESULTS: All three lymphocyte subsets expressed DPP8 and DPP9 mRNA. DPP8 and DPP9 expression were upregulated in both PWM and LPS stimulated mouse splenocytes and in both Jurkat T- and Raji B-cell lines. DPP8 and DPP9 were downregulated in DTT treated and upregulated in mitomycin-C treated Raji cells. DPP9-transfected Raji cells exhibited more annexin V⁺ cells and associated apoptosis. DPP8 and DPP9 mRNA were upregulated in CCl4 induced fibrotic livers but not in the lymphocytes isolated from such livers, while DPP9 was upregulated in EGF stimulated Huh7 cells. In contrast, intrahepatic DPP8 and DPP9 mRNA expression levels were low in the Mdr2 gko mouse and in human PBC compared to non-diseased livers. CONCLUSION: These expression patterns point to biological roles for DPP8 and DPP9 in lymphocyte activation and apoptosis and in hepatocytes during liver disease pathogenesis.


Subject(s)
Chemical and Drug Induced Liver Injury/enzymology , Dipeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Liver Cirrhosis, Biliary/enzymology , Liver Cirrhosis, Experimental/enzymology , Liver/enzymology , Lymphocyte Activation , Lymphocyte Subsets/enzymology , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Aged , Animals , Apoptosis , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/pathology , Dipeptidases/genetics , Dipeptidyl Peptidase 4/deficiency , Dipeptidyl Peptidase 4/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Endopeptidases , Female , Gelatinases/deficiency , Gelatinases/genetics , Humans , Jurkat Cells , Liver/innervation , Liver/pathology , Liver Cirrhosis, Biliary/etiology , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/immunology , Liver Cirrhosis, Biliary/pathology , Liver Cirrhosis, Experimental/etiology , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/immunology , Liver Cirrhosis, Experimental/pathology , Lymphocyte Subsets/immunology , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , RNA, Messenger/metabolism , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Time Factors , ATP-Binding Cassette Sub-Family B Member 4
10.
Mol Cancer Res ; 9(7): 948-59, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21622624

ABSTRACT

Dipeptidyl peptidase IV (DPP4), DPP8, DPP9, and fibroblast activation protein (FAP), the four proteases of the DPP4 gene family, have unique peptidase and extra-enzymatic activities that have been implicated in various diseases including cancers. We report here a novel role of DPP9 in regulating cell survival and proliferation through modulating molecular signaling cascades. Akt (protein kinase B) activation was significantly inhibited by human DPP9 overexpression in human hepatoma cells (HepG2 and Huh7) and human embryonic kidney cells (HEK293T), whereas extracellular signal-regulated kinases (ERK1/2) activity was unaffected, revealing a pathway-specific effect. Interestingly, the inhibitory effect of DPP9 on Akt pathway activation was growth factor dependent. DPP9 overexpression caused apoptosis and significantly less epidermal growth factor (EGF)-mediated Akt activation in HepG2 cells. However, such inhibitory effect was not observed in cells stimulated with other growth factors, including connective tissue growth factor, hepatic growth factor, insulin or platelet-derived growth factor-BB. The effect of DPP9 on Akt did not occur when DPP9 enzyme activity was ablated by either mutagenesis or inhibition. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a major downstream effector of Ras. We found that DPP9 and DPP8, but not DPP4 or FAP, associate with H-Ras, a key signal molecule of the EGF receptor signaling pathway. These findings suggest an important signaling role of DPP9 in the regulation of survival and proliferation pathways.


Subject(s)
Apoptosis , Cell Proliferation , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Epidermal Growth Factor/metabolism , Cell Line, Tumor , Cell Survival , Dipeptidases/antagonists & inhibitors , Dipeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , ErbB Receptors/metabolism , HEK293 Cells , HeLa Cells , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/enzymology , Liver Neoplasms/enzymology , Liver Neoplasms/etiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
11.
FEBS J ; 278(8): 1316-32, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21314817

ABSTRACT

Fibroblast activation protein-α (FAP) is a cell surface-expressed and soluble enzyme of the prolyl oligopeptidase family, which includes dipeptidyl peptidase 4 (DPP4). FAP is not generally expressed in normal adult tissues, but is found at high levels in activated myofibroblasts and hepatic stellate cells in fibrosis and in stromal fibroblasts of epithelial tumours. FAP possesses a rare catalytic activity, hydrolysis of the post-proline bond two or more residues from the N-terminus of target substrates. α(2)-antiplasmin is an important physiological substrate of FAP endopeptidase activity. This study reports the first natural substrates of FAP dipeptidyl peptidase activity. Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY were the most efficiently hydrolysed substrates and the first hormone substrates of FAP to be identified. In addition, FAP slowly hydrolysed other hormone peptides, such as the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are efficient DPP4 substrates. FAP showed negligible or no hydrolysis of eight chemokines that are readily hydrolysed by DPP4. This novel identification of FAP substrates furthers our understanding of this unique protease by indicating potential roles in cardiac function and neurobiology.


Subject(s)
Gelatinases/metabolism , Membrane Proteins/metabolism , Natriuretic Peptide, Brain/metabolism , Neuropeptide Y/metabolism , Peptide YY/metabolism , Serine Endopeptidases/metabolism , Substance P/metabolism , Dipeptidyl Peptidase 4/metabolism , Endopeptidases , Humans , Substrate Specificity
12.
FEBS J ; 277(5): 1126-44, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20074209

ABSTRACT

Of the 600+ known proteases identified to date in mammals, a significant percentage is involved or implicated in pathogenic and cancer processes. The dipeptidyl peptidase IV (DPIV) gene family, comprising four enzyme members [DPIV (EC 3.4.14.5), fibroblast activation protein, DP8 and DP9] and two nonenzyme members [DP6 (DPL1) and DP10 (DPL2)], are interesting in this regard because of their multiple diverse functions, varying patterns of distribution/localization and subtle, but significant, differences in structure/substrate recognition. In addition, their engagement in cell biological processes involves both enzymatic and nonenzymatic capabilities. This article examines, in detail, our current understanding of the biological involvement of this unique enzyme family and their overall potential as therapeutic targets.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Neoplasms/enzymology , Neoplasms/genetics , Animals , Biomarkers, Tumor/classification , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/classification , Disease Models, Animal , Drug Delivery Systems , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/immunology
13.
Front Biosci ; 13: 3168-80, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17981786

ABSTRACT

Fibroblast activation protein (FAP) is the member of Dipeptidyl Peptidase IV (DPIV) gene family that is most similar to DPIV. Four members of this family, DPIV, FAP, DP8 and DP9 possess a rare catalytic activity, hydrolysis of a prolyl bond two residues from the substrate N terminus. Crystal structures show that the soluble form of FAP comprises two domains, an alpha/beta-hydrolase domain and an 8-blade beta-propeller domain. The interface between these two domains forms the catalytic pocket, and an opening for substrate access to the internal active site. The FAP homodimer is structurally very similar to DPIV but FAP glycoprotein expression is largely confined to mesenchymal cells in diseased and damaged tissue, notably the tissue remodelling region in chronically injured liver. FAP peptide substrates include denatured collagen and alpha2-antiplasmin. The functional roles of FAP in tumors and fibrotic tissue are not fully understood. This review places FAP in the context of chronic liver injury pathogenesis.


Subject(s)
Antigens, Neoplasm/chemistry , Antigens, Neoplasm/physiology , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/physiology , Fibroblasts/metabolism , Liver Diseases/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Serine Endopeptidases/chemistry , Serine Endopeptidases/physiology , Animals , Binding Sites , Catalysis , Dipeptidyl Peptidase 4/biosynthesis , Endopeptidases , Extracellular Matrix/metabolism , Gelatinases , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/therapy , Membrane Proteins , Models, Biological , Molecular Sequence Data , Protein Conformation , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...